# **Updating Language Models**

Joel Jang | MS Student @ KAIST | 02.11.2023

https://joeljang.github.io/

#### **Table of Contents**

#### Part 1 (~30 minutes)

- Towards Continual Knowledge Learning of Language Models [ICLR'22]
- TemporalWiki: A Lifelong Benchmark for Training and Evaluating Ever-Evolving Language Models [EMNLP'22]
- Knowledge Unlearning for Mitigating Privacy Risks in Language Models [under review]

#### Part 2 (~30 minutes)

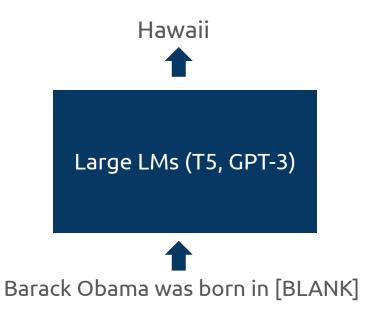
 Exploring the Benefits of Training Expert Language Models over Instruction Tuning [under review]

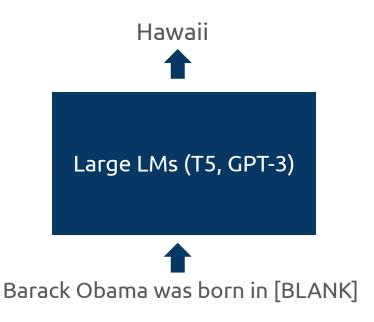
#### **Table of Contents**

#### Part 1 (~30 minutes)

- Towards Continual Knowledge Learning of Language Models [ICLR'22]
- TemporalWiki: A Lifelong Benchmark for Training and Evaluating Ever-Evolving Language Models [EMNLP'22]
- Knowledge Unlearning for Mitigating Privacy Risks in Language Models [under review]

#### Part 2 (~30 minutes)


- Exploring the Benefits of Training Expert Language Models over Instruction Tuning [under review]


# Towards Continual Knowledge Learning of Language Models [ICLR'22]

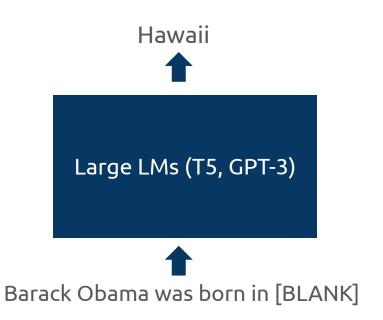
Joel Jang<sup>1</sup>, Seonghyeon Ye<sup>1</sup>, Sohee Yang<sup>1</sup>, Joongbo Shin<sup>2</sup>, Janghoon Han<sup>2</sup>, Gyeunghun Kim<sup>2</sup>, Stanley Choi<sup>2</sup>, Minjoon Seo<sup>1</sup>



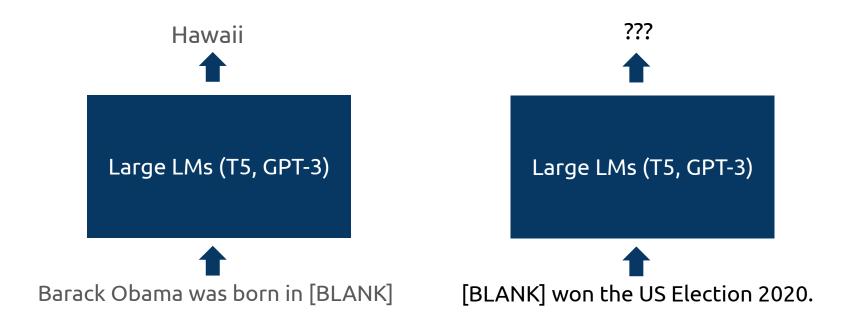






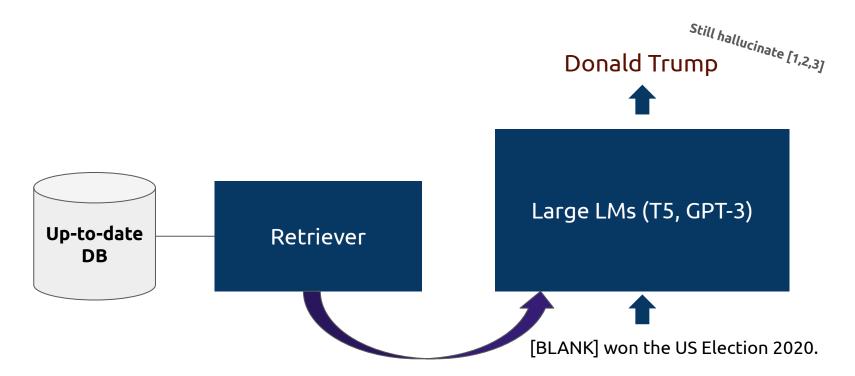


Open Domain Question Answering


Fact Checking


Slot Filling


Knowledgeable Open Dialogue



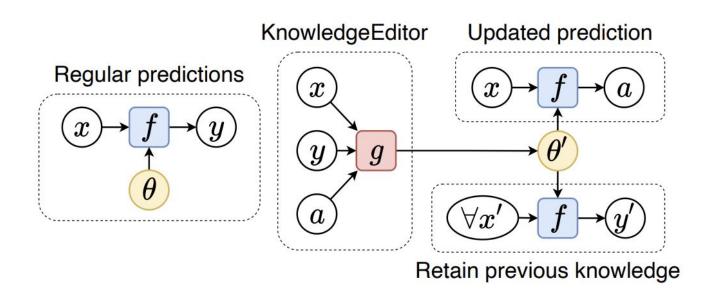









# What if we <u>retrieve</u> updated information?




<sup>[1]</sup> Michael JQ Zhang and Eunsol Choi. 2021. Situatedqa: Incorporating extra-linguistic contexts into qa. In EMNLP.

<sup>[2]</sup> Wenhu Chen, Xinyi Wang, and William Yang Wang. 2021. A dataset for answering time-sensitive questions. In NeurIPS

<sup>[3]</sup> Shayne Longpre, Kartik Perisetla, Anthony Chen, Nikhil Ramesh, Chris DuBois, and Sameer Singh. 2021. Entity-based knowledge conflicts in question answering..

# Fine-grained knowledge editing



<sup>[1]</sup> De Cao, N., Aziz, W., & Titov, I. (2021). Editing factual knowledge in language models. arXiv preprint arXiv:2104.08164.

<sup>[2]</sup> Mitchell, E., Lin, C., Bosselut, A., Finn, C., & Manning, C. D. (2021). Fast model editing at scale. arXiv preprint arXiv:2110.11309.

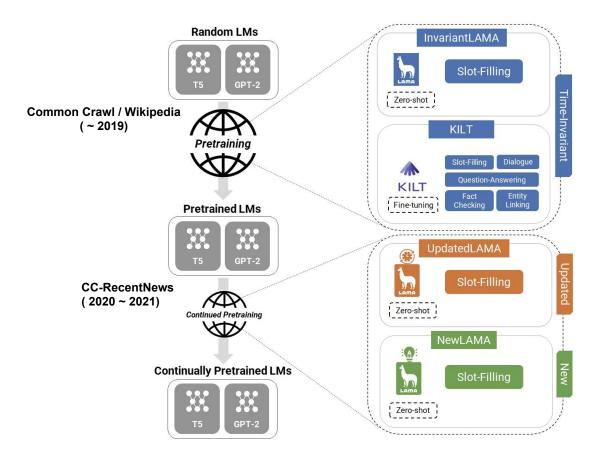
<sup>[3]</sup> Meng, K., Bau, D., Andonian, A., & Belinkov, Y. (2022). Locating and editing factual knowledge in gpt. arXiv preprint arXiv:2202.05262.

1. Continue Pretraining on new Wikipedia or Common Crawl Dump

**Computationally Inefficient** 

1. Continue Pretraining on new Wikipedia or Common Crawl Dump

**Computationally Inefficient** 

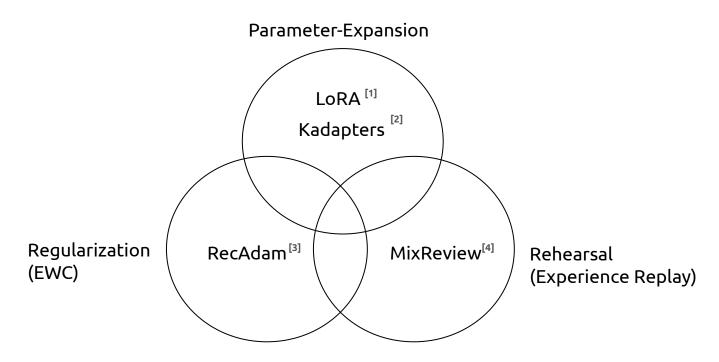

2. Continue Pretraining on only new data (e.g. recently crawled news articles)

catastrophic forgetting

1. Continue Pretraining on new Wikipedia or Common Crawl Dump

**Computationally Inefficient** 

2. Continue Pretraining on only new data (e.g. recently crawled news articles) while mitigating catastrophic forgetting through continual learning




| Task          | Input                                                                                                                                                                                                                                                | Output                                                    |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| InvariantLAMA | iPod Touch is produced by The Sharon Cuneta Show was created in The native language of Lee Chang-dong is                                                                                                                                             | Apple Philippines Korean                                  |
| UPDATEDLAMA   | is the prime minister of England.  has the most passing yards in the NFL.  Bale has champions league titles with                                                                                                                                     | Theresa May→ Boris Johnson Brady Quinn→ Jalen Guyton  3→4 |
| NewLAMA       | Real Madrid.  Alicia Braga plays in the New Mutant.  owns the rights to the Falcon and the Winter Soldier.  Tesla invested in the digital currency bitcoin.                                                                                          | Cecilia Reyes Disney 1.5 billion                          |
| NewLAMA-Easy  | The decision of the two volleyball stars Bria and Cimone Woodard to withdraw from the Power 5 School to study at has become a national story.  Allen Lazard is officially listed as questionable with a nuclear injury after missing the last games. | Howard University                                         |

$$\operatorname{FUAR}(\mathbb{T}^F, T_n^U, T_n^A) = \begin{cases} & & \operatorname{Forgotten} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

$$\text{FUAR}(\mathbb{T}^F, T_n^U, T_n^A) = \begin{cases} \sum\limits_{i=0}^{n-1} \max(0, \operatorname{Gap}(T_i^F, D_i, D_n)) \mathbb{1}_{\{T_i^F \neq n.d.\}} \\ \sum\limits_{i=0}^{n-1} \{\max(0, \operatorname{Gap}(T_n^U, D_n, D_i)) \mathbb{1}_{\{T_i^F \neq n.d.\}} + \max(0, \operatorname{Gap}(T_n^A, D_n, D_i)) \mathbb{1}_{\{T_i^F \neq n.d.\}} \} \\ \text{if denominator } > 0, \\ \textit{no gain, otherwise.} \end{cases}$$

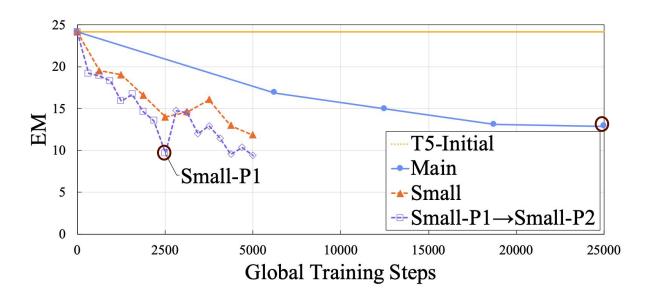
Detailed explanation can be found in the paper..!



<sup>[1]</sup> Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2021). Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.

<sup>[2]</sup> Wang, R., Tang, D., Duan, N., Wei, Z., Huang, X., Cao, G., ... & Zhou, M. (2020). K-adapter: Infusing knowledge into pre-trained models with adapters. arXiv preprint arXiv:2002.01808.

<sup>[3]</sup> Chen, S., Hou, Y., Cui, Y., Che, W., Liu, T., & Yu, X. (2020). Recall and learn: Fine-tuning deep pretrained language models with less forgetting. arXiv preprint arXiv:2004.12651.


<sup>[4]</sup> He, T., Liu, J., Cho, K., Ott, M., Liu, B., Glass, J., & Peng, F. (2021, April). Analyzing the forgetting problem in pretrain-finetuning of open-domain dialogue response models. In *Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume* (pp. 1121-1133).

# Main Results & Findings

|                       | Method             | # of Params<br>(Trainable / Total) | IL<br>EM     | UL<br>EM     | NL<br>EM    | NLE<br>EM    | FUAR<br>((IL),UL,NL)↓ |
|-----------------------|--------------------|------------------------------------|--------------|--------------|-------------|--------------|-----------------------|
|                       | T5-Initial         | 0M / 737M                          | 24.17        | 1.62         | 1.88        | 10.32        | -                     |
| _                     | T5-Vanilla         | 737M / 737M                        | 12.89        | 10.17        | 3.77        | 17.75        | 1.08                  |
| Regularization        | T5-RecAdam         | 737M / 737M                        | 13.20        | 12.55        | 4.02        | 17.85        | 0.84                  |
| Rehearsal             | T5-MixReview       | 737M / 737M                        | 13.92        | 6.49         | 2.89        | 14.86        | 1.74                  |
|                       | T5-LoRA            | 403M / 738M                        | 16.58        | 12.77        | 4.52        | 19.56        | 0.55                  |
| Darameter expansion   | T5-Kadapters (k=2) | 427M / 762M                        | 19.59        | 12.34        | 5.03        | 18.75        | <u>0.33</u>           |
| Parameter-expansion < | T5-Kadapters (k=3) | 440M / 775M                        | 19.76        | 12.66        | 4.02        | 19.00        | <u>0.33</u>           |
|                       | T5-Modular         | 438M / 773M                        | <u>20.29</u> | <u>12.66</u> | <u>4.65</u> | <u>19.24</u> | 0.28                  |

- 1. Rehearsal method performs worse then naive continued pretraining, highlighting the main difference between **continual learning** and **continual knowledge learning**.
- 2. Parameter-expansion is necessary for the best balance of stability & platiscity.

# **Main Results & Findings**

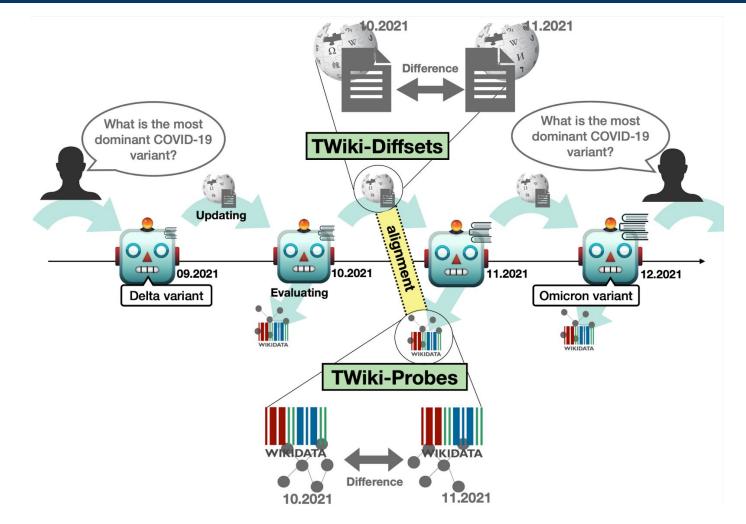


3. Seeing the same data repeatedly is the **main cause of forgetting**, not total training steps (e.g. LM updated with 10 times less training steps showed much more forgetting when the same data were observed more often).

# **Main Results & Findings**

|                    | Fact Checking | t Checking Entity Linking |       |              |              |             | (            | Open Do | Dialogue     |              |       |
|--------------------|---------------|---------------------------|-------|--------------|--------------|-------------|--------------|---------|--------------|--------------|-------|
| Method             | FEVER         | AY2                       | WnWi  | WnCw         | T-REx        | zsRE        | NQ           | НоРо    | TQA          | ELI5         | WoW   |
|                    | ACC           | ACC                       | ACC   | ACC          | ACC          | ACC         | EM           | EM      | EM           | Rouge        | F1    |
| T5-Initial         | 80.39         | 81.44                     | 50.47 | 48.92        | 44.64        | 4.40        | <u>25.63</u> | 17.64   | 28.38        | 13.46        | 13.92 |
| T5-Vanilla         | 78.02         | 81.19                     | 48.17 | 46.46        | 44.08        | 2.04        | 24.93        | 14.36   | 26.51        | 13.38        | 13.07 |
| T5-RecAdam         | 77.83         | 81.44                     | 49.12 | 47.01        | 43.04        | 2.58        | 24.65        | 14.86   | 25.99        | 13.71        | 12.69 |
| T5-MixReview       | 77.17         | 80.77                     | 49.38 | 46.22        | 44.08        | 2.47        | 25.07        | 14.57   | 26.36        | 13.57        | 12.73 |
| T5-LoRA            | 79.89         | 81.44                     | 48.82 | <u>47.29</u> | <u>45.68</u> | 3.01        | 25.49        | 16.71   | 28.23        | 13.42        | 13.60 |
| T5-Kadapters (k=2) | 80.35         | 80.94                     | 48.91 | 46.65        | 45.52        | 3.33        | 26.20        | 16.57   | 26.89        | 13.15        | 12.94 |
| T5-Kadapters (k=3) | 80.31         | 80.52                     | 47.09 | 46.26        | 45.60        | 3.12        | 24.79        | 16.57   | 25.62        | 13.82        | 13.42 |
| T5-Modular         | 80.54         | 82.44                     | 48.44 | 44.81        | 48.16        | <u>3.44</u> | 24.51        | 18.43   | <u>28.31</u> | <u>13.72</u> | 14.03 |

4. Continual Knowledge Learning helps retain performance on downstream tasks


# TemporalWiki: A Lifelong Benchmark for Training and Evaluating Ever-Evolving Language Models [EMNLP'22]

Joel Jang<sup>1,\*</sup>, Seonghyeon Ye<sup>1,\*</sup>, Changho Lee<sup>1</sup>, Sohee Yang<sup>1</sup>, Joongbo Shin<sup>2</sup>, Janghoon Han<sup>2</sup>, Gyeonghun Kim<sup>2</sup>, Minjoon Seo<sup>1</sup>





# **Solution**



# **Main Contributions**

(1) The benchmark allows researchers to periodically track an LM's ability with regards to **stability** & **platiscity**.

# **Main Contributions**

- (1) The benchmark allows researchers to periodically track an LM's ability with regards to **stability** & **platiscity**.
- (2) We find that training an LM on the *diff* data (TWiki-diffsets) through continual learning methods achieves similar or better <u>stability & platiscity trade-off</u> than on the entire snapshot in our benchmark with **12 times less** computational cost.

# **TemporalWiki**

We construct TemporalWiki from 08.2021 to 12.2021 with one month interval between each snapshots (4 updates). We open source the benchmark as well as the <u>code</u> to automatically construct TemporalWiki for future timestamps, making the benchmark **lifelong**.

Code: <a href="https://github.com/joeljang/temporalwiki">https://github.com/joeljang/temporalwiki</a>

# **Training Corpora: TWiki-Diffsets**

#### LifeBank (Philippines) 64081728

[...]

The LifeBank MFI on the other hand as of September 2021, has 520 branches, December 2021, has 536 branches, 22 area/district offices, and 12 zonal offices in Luzon, Visayas and Mindanao...

[....]

#### SARS-CoV-2 Omicron variant 69363482

[....]

On 29 November, a positive case was recorded ...

On 30 November, the Netherlands reported that Omicron ...

On 1 December, the Omicron variant was detected in three samples ...

On 2 December, Dutch health authorities confirmed that all 14 passengers ...

[...]

# **Training Corpora: TWiki-Diffsets**

#### LifeBank (Philippines) 64081728

[...]

The LifeBank MFI on the other hand as of September 2021, has 520 branches, December 2021, has 536 branches, 22 area/district offices, and 12 zonal offices in Luzon, Visayas and Mindanao...

[...]

#### SARS-CoV-2 Omicron variant 69363482

[...]

On 29 November, a positive case was recorded ...

On 30 November, the Netherlands reported that Omicron ...

On I December, the Omicron variant was detected in three samples ...

On 2 December, Dutch health authorities confirmed that all 14 passengers ...

[...]

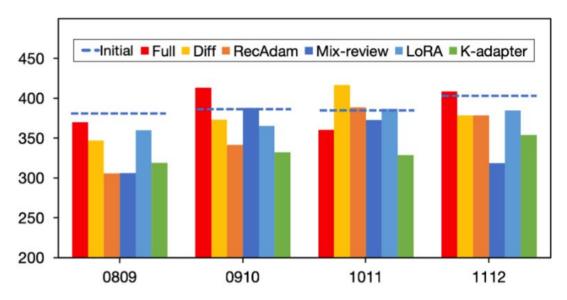
|                    | # of Articles | # of Tokens |
|--------------------|---------------|-------------|
| WIKIPEDIA-08       | 6.3M          | 4.6B        |
| TWIKI-DIFFSET-0809 | 306.4K        | 347.29M     |
| WIKIPEDIA-09       | 6.3M          | 4.6B        |
| TWIKI-DIFFSET-0910 | 299.2K        | 347.96M     |
| WIKIPEDIA-10       | 6.3M          | 4.7B        |
| TWIKI-DIFFSET-1011 | 301.1K        | 346.45M     |
| WIKIPEDIA-11       | 6.3M          | 4.6B        |
| TWIKI-DIFFSET-1112 | 328.9K        | 376.09M     |
| WIKIPEDIA-12       | 6.3M          | 4.7B        |

# **Evaluation Datasets: TWiki-Probes**

| Subject                                      | Relation                 | Object                | Corresponding Sentence in Wikipedia                                                                                                        |
|----------------------------------------------|--------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Carlo Alighiero                              | place of death           | Rome                  | [] Carlo Alighiero died in Rome on 11 September 2021 at the age of 94.[]                                                                   |
| Shang-Chi and the<br>Legend of the Ten Rings | instance of              | Film                  | [] Shang-Chi and the Legend of the Ten Rings is a 2021 American superhero film based on Marvel Comics featuring the character Shang-Chi.[] |
| Out of Shadows                               | language of work or name | Spanish               | [] It was later translated into Portuguese, Turkish and Spanish.[]                                                                         |
| Mario Chalmers                               | member of sports team    | Indios<br>de Mayaguez | [] On September 27, 2021, <b>Chalmers</b> signed with <b>Indios de Mayagüez</b> of the Baloncesto Superior Nacional.[]                     |

# **Evaluation Datasets: TWiki-Probes**

| Subject                                      | Relation                 | Object                | Corresponding Sentence in Wikipedia                                                                                                        |
|----------------------------------------------|--------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Carlo Alighiero                              | place of death           | Rome                  | [] Carlo Alighiero died in Rome on 11 September 2021 at the age of 94.[]                                                                   |
| Shang-Chi and the<br>Legend of the Ten Rings | instance of              | Film                  | [] Shang-Chi and the Legend of the Ten Rings is a 2021 American superhero film based on Marvel Comics featuring the character Shang-Chi.[] |
| Out of Shadows                               | language of work or name | Spanish               | [] It was later translated into Portuguese, Turkish and Spanish.[]                                                                         |
| Mario Chalmers                               | member of sports team    | Indios<br>de Mayaguez | [] On September 27, 2021, <b>Chalmers</b> signed with <b>Indios de Mayagüez</b> of the Baloncesto Superior Nacional.[]                     |


|       | Initial Ca | tegorization | _ | Align  | ment  | $\rightarrow$ | Heurist | ic Filtering |
|-------|------------|--------------|---|--------|-------|---------------|---------|--------------|
| Month | Un         | C            |   | Un     | C     | •             | Un      | C            |
| 0809  | 514,017    | 1,209,272    |   | 10,133 | 2,329 |               | 6,935   | 1,776        |
| 0910  | 544,708    | 1,196,806    |   | 10,625 | 2,621 |               | 7,340   | 1,982        |
| 1011  | 460,228    | 1,572,778    |   | 10,544 | 1,742 |               | 7,313   | 1,358        |
| 1112  | 463,623    | 1,653,709    |   | 10,580 | 3,472 |               | 7,293   | 1,951        |

# **Experiments**

| -                             |                                  | TWil                              | TWiki-Probes-0809          |                            |                            | TWiki-Probes-0910                 |                            |                            | ci-Probes-                 | 1011                       | TWiki-Probes-1112                 |                            |                                   |
|-------------------------------|----------------------------------|-----------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|----------------------------|-----------------------------------|
|                               | Time                             | Un                                | C                          | Avg                        | Un                         | C                                 | Avg                        | Un                         | C                          | Avg                        | Un                                | С                          | Avg                               |
| INITIAL                       | 0 hours                          | 386.16                            | 364.82                     | 375.49                     | 356.66                     | 416.32                            | 386.49                     | 350.54                     | 420.52                     | 385.53                     | 357.37                            | 451.74                     | 404.56                            |
| FULL<br>DIFF                  | $\sim$ 24 hours $\sim$ 2.5 hours | 379.43<br>409.31                  | 360.46<br>284.34           | 369.95<br>346.83           | 388.85<br>409.86           | 437.15<br>336.55                  | 413.00<br>373.21           | 337.34<br>465.20           | 383.06<br>367.72           | 360.20<br>416.46           | 381.11<br>391.77                  | 435.47<br>365.07           | 408.29<br>378.42                  |
| RECADAM<br>MIX-REVIEW<br>LORA | ~4 hours<br>~6 hours<br>~2 hours | 358.10<br><b>337.59</b><br>386.52 | 253.07<br>274.91<br>332.98 | 305.59<br>306.25<br>359.75 | 376.12<br>394.20<br>359.54 | <b>306.64</b><br>381.21<br>371.03 | 341.38<br>387.71<br>365.29 | 439.14<br>375.85<br>381.80 | 338.17<br>369.50<br>391.66 | 388.66<br>372.68<br>386.73 | 400.56<br><b>313.94</b><br>361.42 | 356.60<br>323.49<br>408.19 | 378.58<br><b>318.72</b><br>384.81 |
| K-ADAPTER                     | $\sim$ 2 hours                   | 340.47                            | 297.39                     | 318.93                     | 326.53                     | 338.16                            | 332.35                     | 325.11                     | 332.61                     | 328.86                     | 333.53                            | 374.67                     | <u>354.10</u>                     |

Results (PPL, lower the better) on TWiki-Probes after continued pretraining on (1) Entire Wikipedia denoted as FULL, (2) TWiki-Diffsets denoted as DIFF & (3) with different continual learning (CL) methodologie.

# **Stability-Plasticity Trade Off**



Average ppl, showing the overall balance between stability & plasticity. Results show Diff outperforms Full in most updates (with 12 times less computation) and CL methods help boost the performance even more.

# **Main Takeaway?**

If we have a frequently-updated corpora source (e.g. Wikipedia, Common Crawl),

# **Main Takeaway?**

If we have a frequently-updated corpora source (e.g. Wikipedia, Common Crawl),

1. Don't update the LM utilizing the ENTIRE new snapshot

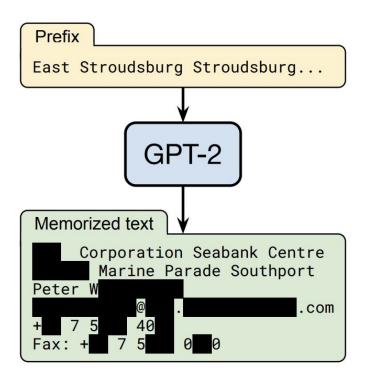
# Main Takeaway?

If we have a frequently-updated corpora source (e.g. Wikipedia, Common Crawl),

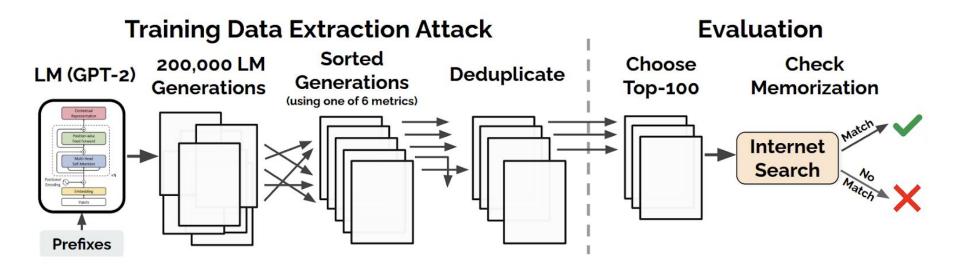
- 1. Don't update the LM utilizing the ENTIRE new snapshot
- 2. Instead, train on the *diff* of the snapshots.

# Main Takeaway?

If we have a frequently-updated corpora source (e.g. Wikipedia, Common Crawl),


- 1. Don't update the LM utilizing the ENTIRE new snapshot
- 2. Instead, train on the *diff* of the snapshots.
- 3. Implement continual learning methods if possible because it helps with overall trade-off.

# **Knowledge Unlearning for Mitigating Privacy Risks** in Language Models


Joel Jang<sup>1</sup>, Dongkeun Yoon<sup>1</sup>, Sohee Yang<sup>1</sup>, Sungmin Cha<sup>2</sup>, Moontae Lee<sup>2</sup>, Lajanugen Logeswaran<sup>2</sup>, Minjoon Seo<sup>1</sup>







Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., ... & Raffel, C. (2021). Extracting training data from large language models. In 30th USENIX Security Symposium (USENIX Security 21) (pp. 2633-2650).



Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., ... & Raffel, C. (2021). Extracting training data from large language models. In 30th USENIX Security Symposium (USENIX Security 21) (pp. 2633-2650).



What does (
Large language models are tra
the internet. So I wanted to know: What does it have on me?

By Melissa Heikkilä

GitHub
Copilot

August 31, 2022

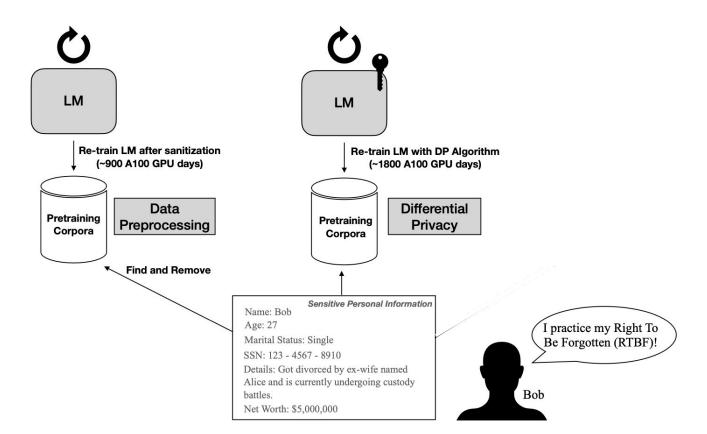




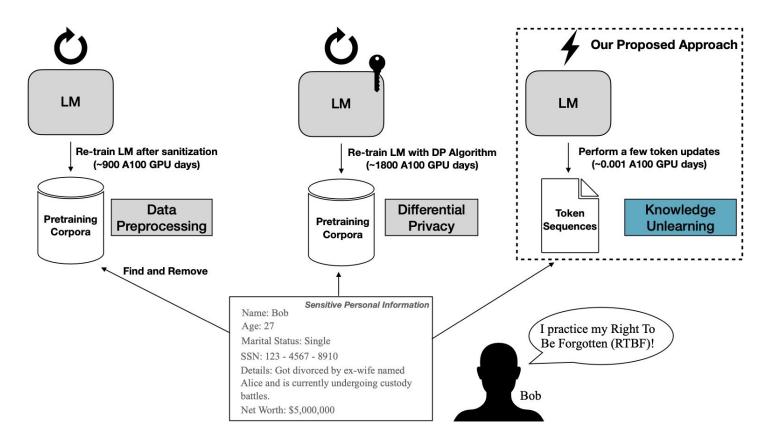
# GitHub faces lawsuit over Copilot AI coding assistant

Class-action complaint contends that training the AI system on public GitHub repos violates the legal rights of creators who posted the code under open-source licenses.

# Background - "Right to Be Forgotten"


The **right to be forgotten** (**RTBF**<sup>[1]</sup>) is the right to have private information about a person be removed from Internet searches and other directories under some circumstances. The concept has been discussed and put into practice in several jurisdictions, including Argentina, [2][3] the European Union (EU), and the Philippines. [4] The issue has arisen from desires of individuals to "determine the development of their life in an autonomous way, without being perpetually or periodically stigmatized as a consequence of a specific action performed in the past." [5]:231

- Limits the *direct* and *indirect* commercial use of individuals' personal information
- This includes using it as a training data for machine learning models


# Background - "Right to Be Forgotten"

What are the current approaches if a person practices his/her RTBF?

# Background - "Right to Be Forgotten"



# **Knowledge Unlearning**



# How do we do Knowledge Unlearning?

$$\mathcal{L}_{UL}(f_{\theta}, \boldsymbol{x}) = -\sum_{t=1}^{T} \log(p_{\theta}(x_t|x_{< t}))$$

## **Metrics - EL & MA**

$$\mathbf{MA}(\boldsymbol{x}) = \frac{\sum_{t=1}^{T-1} \mathbb{1}\{\operatorname{argmax}(p_{\theta}(\cdot|x_{< t})) = x_t\}}{T - 1}$$

## **Metrics - EL & MA**

$$\mathrm{EL}_n(\boldsymbol{x}) = \frac{\sum_{t=1}^{T-n} \mathrm{OVERLAP}_n(f_{\theta}(x_{< t}), x_{\geq t})}{T-n}$$

$$\mathrm{OVERLAP}_n(\boldsymbol{a}, \boldsymbol{b}) = \frac{\sum_{c \in n\text{-}grams(\boldsymbol{a})} \mathbb{1}\{c \in n\text{-}grams(\boldsymbol{b})\}}{|n\text{-}grams(\boldsymbol{a})|}$$

# **Empirical Definitions of Forgetting**

**Empirical Definition of Forgetting** By utilizing both  $EL_n$  and MA, we empirically define a specific token sequence x to be forgotten and is no longer susceptible to extraction attacks when the following conditions are met:

$$\operatorname{EL}_{n}(\boldsymbol{x}) \leq \frac{1}{|D'|} \sum_{\boldsymbol{x}' \in D'} \operatorname{EL}_{n}(\boldsymbol{x}') \text{ and } \operatorname{MA}(\boldsymbol{x}) \leq \frac{1}{|D'|} \sum_{\boldsymbol{x}' \in D'} \operatorname{MA}(\boldsymbol{x}')$$
 (5)

| Model                 | #<br>Params | <b>EL</b> <sub>10</sub> (%) ↓ | <b>MA</b> (%) ↓ | LM Avg.<br>(ACC)↑ | <b>Dialogue Avg.</b> (F1) ↑ | Epoch |
|-----------------------|-------------|-------------------------------|-----------------|-------------------|-----------------------------|-------|
| OPT                   | 125M        | 8.6                           | 52.9            | 42.4              | 10.2                        | -     |
| NEO                   | 125M        | 30.9                          | 77.4            | 43.4              | 9.4                         | -     |
| $NEO + DPD^+$         | 125M        | 0.0                           | 27.4            | N/A               | 7.3                         | -     |
| Neo + UL              | 125M        | 3.7                           | <u>50.1</u>     | 42.6              | 8.0                         | 11.0  |
| NEO + UL <sup>+</sup> | 125M        | <u>1.0</u>                    | 27.4            | 39.9              | 2.6                         | 17.2  |
| OPT                   | 1.3B        | 23.3                          | 67.1            | 50.6              | 12.4                        | -     |
| NEO                   | 1.3B        | 67.6                          | 92.2            | 49.8              | 11.5                        | -     |
| $Neo + DPD^+$         | 1.3B        | 0.0                           | 21.4            | N/A               | 7.1                         | -     |
| NEO + UL              | 1.3B        | 11.0                          | 62.2            | 49.7              | <u>11.6</u>                 | 8.0   |
| $Neo + UL^+$          | 1.3B        | <u>1.9</u>                    | <u>30.4</u>     | 49.7              | 8.5                         | 13.8  |
| OPT                   | 2.7B        | 25.6                          | 69.2            | 52.7              | 12.9                        | -     |
| NEO                   | 2.7B        | 70.4                          | 93.4            | <u>52.3</u>       | 11.5                        | -     |
| $Neo + DPD^+$         | 2.7B        | 0.0                           | 24.2            | N/A               | 6.9                         | -     |
| Neo + UL              | 2.7B        | 13.0                          | 66.0            | 52.3              | <u>12.5</u>                 | 5.4   |
| $Neo + UL^+$          | 2.7B        | <u>1.6</u>                    | <u>31.0</u>     | 51.9              | 11.1                        | 10.8  |

| Model                 | #<br>Params | <b>EL</b> <sub>10</sub> (%) ↓ | <b>MA</b><br>(%) ↓ | LM Avg. (ACC) ↑ | <b>Dialogue Avg.</b> (F1) ↑ | Epoch |
|-----------------------|-------------|-------------------------------|--------------------|-----------------|-----------------------------|-------|
| OPT                   | 125M        | 8.6                           | 52.9               | 42.4            | 10.2                        | -     |
| NEO                   | 125M        | 30.9                          | 77.4               | 43.4            | <u>9.4</u>                  | -     |
| $NEO + DPD^+$         | 125M        | 0.0                           | 27.4               | N/A             | 7.3                         | -     |
| NEO + UL              | 125M        | 3.7                           | <u>50.1</u>        | 42.6            | 8.0                         | 11.0  |
| NEO + UL <sup>+</sup> | 125M        | <u>1.0</u>                    | 27.4               | 39.9            | 2.6                         | 17.2  |
| OPT                   | 1.3B        | 23.3                          | 67.1               | 50.6            | 12.4                        | _     |
| NEO                   | 1.3B        | 67.6                          | 92.2               | 49.8            | 11.5                        | -     |
| $Neo + DPD^+$         | 1.3B        | 0.0                           | 21.4               | N/A             | 7.1                         | -     |
| Neo + UL              | 1.3B        | 11.0                          | 62.2               | 49.7            | <u>11.6</u>                 | 8.0   |
| $Neo + UL^+$          | 1.3B        | <u>1.9</u>                    | <u>30.4</u>        | 49.7            | 8.5                         | 13.8  |
| OPT                   | 2.7B        | 25.6                          | 69.2               | 52.7            | 12.9                        | -     |
| NEO                   | 2.7B        | 70.4                          | 93.4               | <u>52.3</u>     | 11.5                        | -     |
| $NEO + DPD^+$         | 2.7B        | 0.0                           | 24.2               | N/A             | 6.9                         | -     |
| Neo + UL              | 2.7B        | 13.0                          | 66.0               | 52.3            | <u>12.5</u>                 | 5.4   |
| $Neo + UL^+$          | 2.7B        | <u>1.6</u>                    | 31.0               | 51.9            | 11.1                        | 10.8  |

| Model                 | #<br>Params | <b>EL</b> <sub>10</sub> (%) ↓ | <b>MA</b> (%) ↓ | LM Avg. (ACC) ↑ | <b>Dialogue Avg.</b> (F1) ↑ | Epoch |
|-----------------------|-------------|-------------------------------|-----------------|-----------------|-----------------------------|-------|
| OPT                   | 125M        | 8.6                           | 52.9            | 42.4            | 10.2                        | -     |
| NEO                   | 125M        | 30.9                          | 77.4            | 43.4            | <u>9.4</u>                  | -     |
| $Neo + DPD^+$         | 125M        | 0.0                           | 27.4            | N/A             | 7.3                         | -     |
| Neo + UL              | 125M        | 3.7                           | <u>50.1</u>     | 42.6            | 8.0                         | 11.0  |
| Neo + UL <sup>+</sup> | 125M        | <u>1.0</u>                    | 27.4            | 39.9            | 2.6                         | 17.2  |
| OPT                   | 1.3B        | 23.3                          | 67.1            | 50.6            | 12.4                        | -     |
| NEO                   | 1.3B        | 67.6                          | 92.2            | 49.8            | 11.5                        | -     |
| $Neo + DPD^+$         | 1.3B        | 0.0                           | 21.4            | N/A             | 7.1                         | -     |
| Neo + UL              | 1.3B        | 11.0                          | 62.2            | 49.7            | <u>11.6</u>                 | 8.0   |
| $Neo + UL^+$          | 1.3B        | <u>1.9</u>                    | <u>30.4</u>     | 49.7            | 8.5                         | 13.8  |
| OPT                   | 2.7B        | 25.6                          | 69.2            | 52.7            | 12.9                        | [ -   |
| NEO                   | 2.7B        | 70.4                          | 93.4            | 52.3            | 11.5                        | -     |
| $NEO + DPD^+$         | 2.7B        | 0.0                           | 24.2            | N/A             | 6.9                         | -     |
| Neo + UL              | 2.7B        | 13.0                          | 66.0            | 52.3            | <u>12.5</u>                 | 5.4   |
| $Neo + UL^+$          | 2.7B        | 1.6                           | 31.0            | 51.9            | 11.1                        | 10.8  |

| Model         | #<br>Params | <b>EL</b> <sub>10</sub> (%) ↓ | <b>MA</b> (%) ↓ | LM Avg.<br>(ACC)↑ | <b>Dialogue Avg.</b> (F1) ↑ | Epoch |
|---------------|-------------|-------------------------------|-----------------|-------------------|-----------------------------|-------|
| OPT           | 125M        | 8.6                           | 52.9            | 42.4              | 10.2                        | -     |
| NEO           | 125M        | 30.9                          | 77.4            | 43.4              | 9.4                         | -     |
| $NEO + DPD^+$ | 125M        | 0.0                           | 27.4            | N/A               | 7.3                         | -     |
| NEO + UL      | 125M        | 3.7                           | <u>50.1</u>     | 42.6              | 8.0                         | 11.0  |
| $Neo + UL^+$  | 125M        | <u>1.0</u>                    | 27.4            | 39.9              | 2.6                         | 17.2  |
| OPT           | 1.3B        | 23.3                          | 67.1            | 50.6              | 12.4                        | -     |
| NEO           | 1.3B        | 67.6                          | 92.2            | 49.8              | 11.5                        | -     |
| $NEO + DPD^+$ | 1.3B        | 0.0                           | 21.4            | N/A               | 7.1                         | -     |
| NEO + UL      | 1.3B        | 11.0                          | 62.2            | 49.7              | <u>11.6</u>                 | 8.0   |
| $Neo + UL^+$  | 1.3B        | <u>1.9</u>                    | <u>30.4</u>     | 49.7              | 8.5                         | 13.8  |
| OPT           | 2.7B        | 25.6                          | 69.2            | 52.7              | 12.9                        | -     |
| NEO           | 2.7B        | 70.4                          | 93.4            | <u>52.3</u>       | 11.5                        | -     |
| $NEO + DPD^+$ | 2.7B        | 0.0                           | 24.2            | N/A               | 6.9                         | -     |
| Neo + UL      | 2.7B        | 13.0                          | 66.0            | 52.3              | <u>12.5</u>                 | 5.4   |
| $Neo + UL^+$  | 2.7B        | <u>1.6</u>                    | 31.0            | 51.9              | 11.1                        | 10.8  |

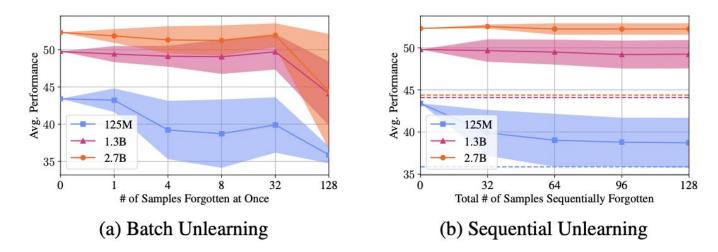



Figure 2: Average LM performance on the 9 benchmarks when varying the total number of samples forgotten at once is shown in (a) and the average LM performances when the 128 samples are divided into 4 chunks and are forgotten sequentially is shown in (b). The lines denote the average performances of 5 random samplings and the standard deviation is shown as the shaded regions. The dotted lines in (b) denotes the s=128 performance in (a) for comparison purposes.

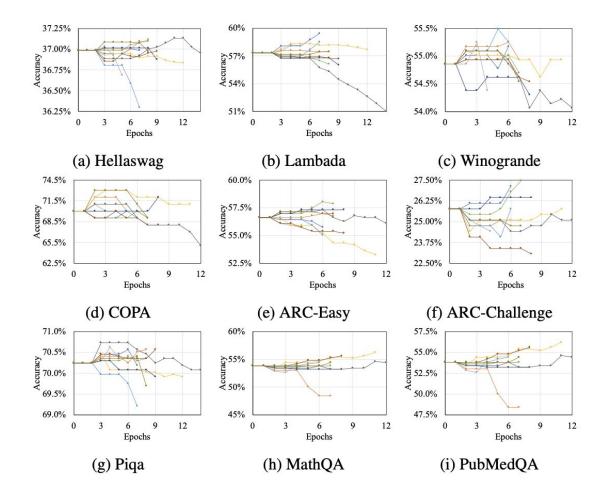



Table 3: An example extracting the suffix of a token sequence from BOOKS3 domain from GPT-NEO 1.3B showing the effect of knowledge unlearning. Model generated text given a prefix of length 100 are shown in Blue.

| Domain | Status               | Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Original<br>Text     | About the Publisher Australia HarperCollins Publishers (Australia) Pty. Ltd. 25 Ryde Road (PO Box 321) Pymble, NSW 2073, Australia http://www.harpercollinsebooks.com.au Canada HarperCollins Publishers Ltd. 55 Avenue Road, Suite 2900 Toronto, ON, M5R, 3L2, Canada http://www.harpercollinsebooks.ca New Zealand HarperCollins Publishers (New Zealand) Limited P.O. Box 1 Auckland, New Zealand http://www.harpercollinsebooks.co.nz United Kingdom HarperCollins Publishers Ltd. 77-85 Fulham Palace Road London, W6 8JB, UK http://www.harpercollinsebooks.co.uk                                                |
| BOOKS3 | Before<br>Unlearning | About the Publisher Australia HarperCollins Publishers (Australia) Pty. Ltd. 25 Ryde Road (PO Box 321) Pymble, NSW 2073, Australia http://www.harpercollinsebooks.com.au Canada HarperCollins Publishers Ltd. 55 Avenue Road, Suite 2900 Toronto, ON, M5R, 3L2, Canada http://www.harpercollinsebooks.ca New Zealand HarperCollins Publishers (New Zealand) Limited P.O. Box 1 Auckland, New Zealand http://www.harpercollinsebooks.co.nz United Kingdom HarperCollins Publishers Ltd. 77-85 Fulham Palace Road London, W6 8JB, UK http://www.harpercollinsebooks.co.uk                                                |
|        | After<br>Unlearning  | About the Publisher Australia HarperCollins Publishers (Australia) Pty. Ltd. 25 Ryde Road (PO Box 321) Pymble, NSW 2073, Australia http://www.harpercollinsebooks.com.au Canada HarperCollins Publishers Ltd. 55 Avenue Road, Suite 2900 Toronto, ON, M5R, 3L2, Canada http://www.harpercollins.com.au/Publishers/ Publisher: level three Level two is levels one and two together. The new face of a already great title! Level one: Just right. Level two: Great. Level three: Awesome. The BloomsburyPublishersPublishers.com.au/PublishersPublishers Levels are for bibliographic information or advanced level. s |

Table 4: Unlearning GPT-NEO 1.3B on token sequences sampled from 8 different domains. We fix the epoch to 10, set s=8 and show the result of the average of 5 random samplings. *Italicized* () denotes the  $\Delta$  from INITIAL.

| Domains        | Initial<br>EL <sub>10</sub> |      |      | Lamba.<br>(ACC) | Wino.<br>(ACC) | COPA<br>(ACC) | ARC-E<br>(ACC) | ARC-C<br>(ACC) | Piqa<br>(ACC) | MathQ<br>(ACC) | PubQ<br>(ACC) | Avg. (ACC)        |
|----------------|-----------------------------|------|------|-----------------|----------------|---------------|----------------|----------------|---------------|----------------|---------------|-------------------|
| INITIAL        | -                           | -    | 37.0 | 57.4            | 54.9           | 70.0          | 56.6           | 25.8           | 70.4          | 21.9           | 53.8          | <b>49.8</b> (0.0) |
| FREELAW        | 60.4                        | 12.1 | 37.2 | 52.2            | 53.9           | 68.4          | 55.5           | 26.2           | <u>70.1</u>   | 21.7           | <u>53.5</u>   | 48.7 (-1.1)       |
| GIT. (CODE)    | 63.9                        | 0.6  | 37.3 | <u>53.4</u>     | 54.4           | 69.2          | 56.3           | 26.0           | 69.9          | 21.5           | 49.8          | 48.7 (-1.1)       |
| GIT. (LICENSE) | 75.8                        | 0.0  | 37.1 | 52.0            | 54.2           | 69.0          | <u>56.4</u>    | <u>26.4</u>    | <u>70.1</u>   | 21.8           | 51.8          | 48.8 (-1.0)       |
| ENRON EMAILS   | 77.3                        | 0.0  | 36.9 | 57.2            | <u>54.8</u>    | 68.4          | 55.8           | 26.3           | 69.8          | 21.8           | 53.1          | 49.4 (-0.4)       |
| BOOKS3         | 70.2                        | 0.0  | 36.4 | 49.5            | 54.2           | 70.8          | 55.6           | 25.5           | 69.9          | 21.7           | 47.4          | 47.9 (-1.9)       |
| PILE CC        | 67.8                        | 0.0  | 35.7 | 45.9            | 53.8           | 70.4          | 54.2           | 26.9           | 69.7          | 21.8           | 52.0          | 47.8 (-2.0)       |
| USPTO BACK.    | 59.4                        | 0.0  | 33.7 | 44.7            | 53.5           | 67.0          | 45.9           | 24.0           | 67.0          | 21.5           | 50.3          | 45.3 (-4.5)       |
| PUBMED CENT.   | 71.8                        | 0.0  | 36.5 | 44.5            | 54.1           | 69.6          | 55.6           | 24.8           | 70.0          | 21.9           | 46.4          | 47.0 (-2.8)       |

Table 4: Unlearning GPT-NEO 1.3B on token sequences sampled from 8 different domains. We fix the epoch to 10, set s=8 and show the result of the average of 5 random samplings. *Italicized* () denotes the  $\Delta$  from INITIAL.

| Domains             | Initial<br>EL <sub>10</sub> |      |      | Lamba.<br>(ACC) | Wino.<br>(ACC) | COPA<br>(ACC) | ARC-E<br>(ACC) | ARC-C<br>(ACC) | Piqa<br>(ACC) | MathQ<br>(ACC) | PubQ<br>(ACC) | Avg. (ACC)        |
|---------------------|-----------------------------|------|------|-----------------|----------------|---------------|----------------|----------------|---------------|----------------|---------------|-------------------|
| INITIAL             | -                           | -    | 37.0 | 57.4            | 54.9           | 70.0          | 56.6           | 25.8           | 70.4          | 21.9           | 53.8          | <b>49.8</b> (0.0) |
| FREELAW             | 60.4                        | 12.1 | 37.2 | 52.2            | 53.9           | 68.4          | 55.5           | 26.2           | <u>70.1</u>   | 21.7           | <u>53.5</u>   | 48.7 (-1.1)       |
| GIT. (CODE)         | 63.9                        | 0.6  | 37.3 | <u>53.4</u>     | 54.4           | 69.2          | 56.3           | 26.0           | 69.9          | 21.5           | 49.8          | 48.7 (-1.1)       |
| GIT. (LICENSE)      | 75.8                        | 0.0  | 37.1 | 52.0            | 54.2           | 69.0          | <u>56.4</u>    | <u>26.4</u>    | <u>70.1</u>   | <u>21.8</u>    | 51.8          | 48.8 (-1.0)       |
| <b>ENRON EMAILS</b> | 77.3                        | 0.0  | 36.9 | 57.2            | <u>54.8</u>    | 68.4          | 55.8           | 26.3           | 69.8          | 21.8           | 53.1          | 49.4 (-0.4)       |
| BOOKS3              | 70.2                        | 0.0  | 36.4 | 49.5            | 54.2           | 70.8          | 55.6           | 25.5           | 69.9          | 21.7           | 47.4          | 47.9 (-1.9)       |
| PILE CC             | 67.8                        | 0.0  | 35.7 | 45.9            | 53.8           | <u>70.4</u>   | 54.2           | 26.9           | 69.7          | <u>21.8</u>    | 52.0          | 47.8 (-2.0)       |
| USPTO BACK.         | 59.4                        | 0.0  | 33.7 | 44.7            | 53.5           | 67.0          | 45.9           | 24.0           | 67.0          | 21.5           | 50.3          | 45.3 (-4.5)       |
| PUBMED CENT.        | 71.8                        | 0.0  | 36.5 | 44.5            | 54.1           | 69.6          | 55.6           | 24.8           | 70.0          | 21.9           | 46.4          | 47.0 (-2.8)       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Params       | (%)↓       | (%)↓         | (ACC)        | (ACC)         | (ACC)        | (ACC)        | (ACC)        | (ACC)        | (ACC)        | (ACC)        | (ACC)        | (ACC)        |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Neo<br>Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125M         | 30.9       | 77.4         | 28.2<br>+0.2 | 37.6<br>+8.0  | 51.8<br>+1.9 | 62.0<br>+5.0 | 45.6<br>+0.0 | 22.0<br>+2.2 | 63.3<br>+0.0 | 22.5<br>+0.3 | 57.6<br>+0.0 | 43.4<br>+2.0 | 1            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125M         | 1 31       | 28.1         | 1 28 1       | 41.0          | 52.5         | 62.0         | 43.2         | 21.0         | 63.0         | 22.8         | 57.6         | 43.5         | 1 14.0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125M         | 0.0        | 27.6         | 28.1         | 24.9          | 50.8         | 67.0         | 42.3         | 23.7         | 62.8         | 21.9         | 57.6         | 42.1         | 10.0         |
| $Neo + UL^+$ $(s = 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 125M         | 0.0        | 27.1         | 28.1         | 42.1          | 52.5         | 63.0         | 44.1         | 20.3         | 62.6         | 22.5         | 57.6         | 43.7         | 5.0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125M<br>125M | 0.0        | 25.6<br>28.1 | 28.2<br>28.4 | 44.9<br>33.9  | 52.0<br>51.5 | 62.0<br>66.0 | 41.8<br>44.8 | 21.4<br>21.7 | 62.6<br>62.8 | 22.2<br>22.3 | 57.6<br>57.6 | 43.6<br>43.2 | 11.0<br>10.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125M         | 0.9        | 28.8         | 27.8         | 44.1          | 51.9         | 52.0         | 37.4         | 19.7         | 60.5         | 22.3         | 57.6         | 41.5         | 16.0         |
| men company on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125M         | 0.0        | 28.6         | 27.4         | 2.5           | 49.4         | 59.0         | 38.6         | 23.1         | 60.5         | 21.2         | 43.8         | 36.2         | 19.0         |
| $NEO + UL^+ (s = 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125M<br>125M | 3.6<br>2.6 | 28.8         | 27.7<br>27.6 | 33.4<br>29.9  | 51.8<br>52.4 | 55.0<br>50.0 | 37.7<br>36.5 | 21.0<br>19.0 | 61.0         | 22.3         | 57.6<br>57.6 | 40.8<br>39.5 | 20.0<br>18.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125M         | 0.0        | 28.4         | 27.6         | 6.7           | 49.7         | 61.0         | 42.5         | 22.7         | 61.0         | 21.4         | 50.6         | 38.1         | 16.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125M         | 0.0        | 28.5         | 27.6         | 35.0          | 51.8         | 51.0         | 37.6         | 18.0         | 60.1         | 22.4         | 57.6         | 40.1         | 16.0         |
| Neo + $UL^+$ ( $s = 8$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125M<br>125M | 0.3        | 28.1<br>29.6 | 27.7<br>28.0 | 5.4<br>41.2   | 49.6<br>52.2 | 62.0<br>55.0 | 40.6<br>40.2 | 21.0<br>21.4 | 61.2         | 21.8<br>21.9 | 52.4<br>57.6 | 38.0<br>42.0 | 19.0<br>18.0 |
| NEO + OL · (8 = 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125M         | 5.0        | 25.3         | 27.4         | 1.3           | 49.6         | 65.0         | 37.6         | 24.4         | 59.2         | 21.2         | 33.8         | 35.5         | 23.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125M         | 0.0        | 28.2         | 27.9         | 5.3           | 50.5         | 61.0         | 41.6         | 22.4         | 60.7         | 21.5         | 51.4         | 38.0         | 18.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125M<br>125M | 0.3        | 28.4<br>27.1 | 27.2<br>27.0 | 42.3<br>17.1  | 53.7<br>52.4 | 56.0<br>53.0 | 38.1<br>34.0 | 21.0<br>20.0 | 59.7<br>59.8 | 22.4<br>21.5 | 57.6<br>57.6 | 42.0<br>38.0 | 20.0<br>18.0 |
| $Neo + UL^{+}$ (s = 32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 125M<br>125M | 0.8        | 24.1         | 27.0         | 45.6          | 51.9         | 50.0         | 38.6         | 20.0         | 59.8         | 22.6         | 57.6         | 41.5         | 13.0         |
| (0 = 02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125M         | 3.0        | 28.7         | 27.5         | 2.6           | 49.2         | 59.0         | 37.7         | 21.4         | 58.4         | 20.9         | 46.8         | 35.9         | 20.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125M         | 0.7        | 28.5         | 27.3         | 44.5          | 53.0         | 54.0         | 39.0         | 20.3         | 59.5         | 22.5         | 57.6         | 42.0         | 15.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125M<br>125M | 1.3        | 28.1         | 27.1         | 4.6<br>1.8    | 50.5         | 58.0<br>60.0 | 37.9<br>36.4 | 21.3         | 57.5<br>56.6 | 21.4         | 47.8<br>41.8 | 36.2         | 16.0         |
| $Neo + UL^{+} (s = 128)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125M         | 3.9        | 26.7         | 27.0         | 3.9           | 50.9         | 59.0         | 35.2         | 21.3         | 56.0         | 21.3         | 49.6         | 36.0         | 17.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125M         | 2.4        | 26.6         | 26.9         | 2.7           | 50.2         | 56.0         | 35.9         | 22.3         | 57.2         | 21.2         | 43.8         | 35.1         | 16.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125M         | 3.8        | 27.3         | 27.0         | 6.4           | 50.9         | 57.0         | 37.3         | 21.3         | 57.2         | 21.2         | 52.0         | 36.7         | 17.0         |
| Neo<br>Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.3B         | 67.6       | 92.2         | 37.0<br>+0.4 | 57.4<br>+10.1 | 54.8<br>+2.1 | 70.0<br>+2.0 | 56.6<br>+1.1 | 25.8<br>+3.4 | 70.4<br>+0.3 | 21.9<br>+0.4 | 53.8<br>+3.8 | 49.8<br>+2.6 | 1            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3B         | 0.0        | 27.6         | 36.8         | 52.1          | 54.7         | 72.0         | 55.9         | 27.8         | 69.7         | 21.5         | 53.0         | 49.3         | 9.0          |
| 100 DOT 100 DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3B         | 0.0        | 30.2         | 36.6         | 54.6          | 54.9         | 69.0         | 55.4         | 26.8         | 70.7         | 21.7         | 53.4         | 49.2         | 6.0          |
| $NEO + UL^+ (s = 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.3B<br>1.3B | 0.0        | 29.7<br>32.2 | 36.7<br>37.1 | 58.2<br>52.4  | 55.4<br>53.7 | 70.0<br>68.0 | 56.1<br>56.1 | 25.4         | 69.9<br>70.1 | 22.0         | 53.2<br>54.2 | 49.7<br>48.6 | 4.0<br>8.0   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3B         | 0.0        | 27.6         | 37.3         | 60.1          | 55.6         | 70.0         | 57.5         | 25.1         | 70.0         | 21.7         | 55.2         | 50.3         | 10.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3B         | 0.0        | 30.3         | 37.3         | 48.3          | 54.4         | 70.0         | 55.0         | 29.2         | 69.9         | 20.6         | 56.0         | 49.0         | 12.0         |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3B<br>1.3B | 0.0        | 29.7         | 36.8<br>36.8 | 49.4          | 53.4         | 69.0<br>70.0 | 55.2         | 26.8         | 70.6         | 21.4         | 52.8<br>54.0 | 48.4         | 9.0          |
| $NEO + UL^+ (s = 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.3B<br>1.3B | 4.8        | 31.4         | 36.8         | 59.2          | 54.9         | 71.0         | 55.2         | 25.8         | 69.5         | 21.5         | 50.2         | 49.0         | 10.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3B         | 1.7        | 31.8         | 37.0         | 58.4          | 54.4         | 71.0         | 57.7         | 24.7         | 70.2         | 22.0         | 54.0         | 49.9         | 9.0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3B         | 0.3        | 29.7         | 37.1         | 66.5          | 54.5         | 70.0         | 52.0         | 26.8         | 69.4         | 21.7         | 56.8         | 50.5         | 13.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3B         | 1.9        | 29.5         | 36.8         | 43.0          | 53.1         | 71.0         | 51.3         | 27.5         | 70.4         | 21.0         | 42.4         | 46.3         | 13.0         |
| Neo + UL $^+$ ( $s = 8$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3B<br>1.3B | 0.2<br>3.1 | 26.2<br>32.0 | 37.2<br>37.4 | 47.3<br>57.6  | 54.2<br>54.3 | 72.0<br>70.0 | 55.2<br>56.1 | 25.8<br>26.8 | 70.4         | 21.8         | 54.8<br>54.8 | 48.7<br>49.8 | 12.0<br>14.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3B         | 1.4        | 32.0         | 37.1         | 57.4          | 54.5         | 71.0         | 57.0         | 26.1         | 70.0         | 21.9         | 54.2         | 49.9         | 11.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3B         | 0.7        | 33.0         | 36.5         | 63.2          | 55.9         | 70.0         | 52.4         | 25.1         | 69.7         | 21.8         | 55.4         | 50.0         | 13.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3B<br>1.3B | 0.7        | 29.8         | 36.7<br>37.0 | 50.9          | 53.5         | 71.0<br>69.0 | 56.3         | 27.8         | 70.7         | 22.0         | 39.4<br>55.8 | 47.6<br>50.6 | 14.0         |
| $NEO + UL^{+} (s = 32)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.3B         | 4.2        | 31.2         | 35.8         | 67.5          | 55.3         | 67.0         | 51.5         | 25.4         | 68.1         | 21.9         | 56.6         | 49.8         | 14.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3B         | 2.1        | 29.5         | 35.8         | 63.9          | 55.7         | 70.0         | 54.1         | 26.4         | 69.5         | 22.3         | 56.8         | 50.5         | 15.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3B         | 0.4        | 24.5         | 31.1         | 54.2          | 55.2         | 69.0         | 53.2         | 24.7         | 66.1         | 21.9         | 56.4         | 48.0         | 6.0          |
| $NE0 + UL^{+}(s = 128)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.3B<br>1.3B | 4.9        | 19.8         | 27.8<br>30.6 | 2.2<br>41.6   | 54.8<br>55.1 | 69.0<br>69.0 | 50.9<br>54.4 | 23.3         | 57.9<br>63.8 | 21.8         | 55.8<br>55.0 | 40.4<br>46.4 | 8.0<br>6.0   |
| NEO + CL (8 = 126)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3B         | 2.9        | 23.6         | 27.6         | 8.8           | 52.9         | 68.0         | 44.5         | 18.9         | 57.7         | 21.6         | 57.4         | 39.7         | 9.0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3B         | 1.3        | 23.1         | 28.5         | 48.6          | 55.5         | 69.0         | 48.8         | 21.6         | 62.3         | 22.2         | 57.6         | 46.0         | 8.0          |
| NEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.7B         | 70.4       | 93.4         | 40.8         | 62.2          | 56.4         | 75.0         | 59.6         | 25.4         | 73.0         | 21.4         | 57.0         | 52.3         | -            |
| Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -            | 1 0        | 5.           | +0.8         | +7.9          | +1.0         | +0.0         | +1.5         | +4.3         | +0.3         | +1.1         | +1.0         | +2.0         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7B<br>2.7B | 0.0        | 3.0<br>23.6  | 40.8<br>40.5 | 62.2<br>56.8  | 56.6<br>54.4 | 72.0<br>74.0 | 55.7<br>59.6 | 26.4<br>26.1 | 73.1<br>72.8 | 21.8         | 57.6<br>56.6 | 51.8<br>51.3 | 10.0         |
| Neo + UL $^+$ ( $s = 1$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.7B         | 0.0        | 27.6         | 40.6         | 62.5          | 57.0         | 75.0         | 59.1         | 24.7         | 73.0         | 21.5         | 56.6         | 52.2         | 6.0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7B<br>2.7B | 0.0        | 20.6         | 40.5<br>40.6 | 62.2          | 55.8<br>56.4 | 74.0<br>72.0 | 58.9<br>58.0 | 25.8<br>27.1 | 73.0         | 21.7<br>21.2 | 57.2<br>57.4 | 51.9<br>51.9 | 10.0<br>9.0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7B         | 1 0.0      |              |              |               | 54.9         |              |              |              | 69.9         |              | 100000       |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7B<br>2.7B | 0.4        | 22.6<br>30.0 | 41.5<br>41.6 | 60.0<br>46.5  | 54.9<br>53.4 | 72.0<br>71.0 | 55.0<br>55.6 | 26.4<br>25.1 | 69.9<br>72.0 | 21.3         | 57.8<br>57.2 | 51.0<br>49.3 | 12.0         |
| $Neo + UL^+$ (s = 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.7B         | 0.7        | 23.7         | 40.4         | 59.7          | 54.9         | 74.0         | 58.7         | 23.7         | 72.5         | 20.8         | 57.4         | 51.3         | 9.0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7B<br>2.7B | 3.2<br>0.2 | 32.4<br>31.9 | 41.2<br>40.3 | 67.2<br>61.2  | 56.0<br>55.7 | 73.0<br>74.0 | 57.3<br>60.0 | 28.1<br>27.5 | 73.3<br>72.0 | 22.3         | 57.2<br>57.2 | 52.8<br>52.1 | 8.0<br>10.0  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.7B         | 0.3        | 29.5         | 41.2         | 64.6          | 55.4         | 71.0         | 52.9         | 27.1         | 69.5         | 21.7         | 58.0         | 51.3         | 1 10.0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7B         | 2.1        | 26.4         | 40.6         | 48.7          | 52.9         | 67.0         | 55.0         | 25.8         | 72.1         | 21.8         | 57.2         | 49.0         | 11.0         |
| Neo + UL $^+$ ( $s=8$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.7B         | 0.5        | 31.2         | 41.1         | 54.1          | 55.0         | 74.0         | 59.3         | 25.1         | 72.5         | 22.1         | 57.4         | 51.2         | 11.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7B<br>2.7B | 1.9<br>0.0 | 33.8<br>20.4 | 40.7<br>40.0 | 65.7          | 57.4<br>55.8 | 72.0<br>73.0 | 58.4<br>60.1 | 27.1<br>28.5 | 72.6<br>72.5 | 21.9<br>21.5 | 57.0<br>57.2 | 52.5<br>52.2 | 8.0<br>11.0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7B         | 0.6        | 31.7         | 40.8         | 68.2          | 56.1         | 68.0         | 54.4         | 28.0         | 71.9         | 21.4         | 57.0         | 51.8         | 11.0         |
| and the same of th | 2.7B         | 1.1        | 32.4         | 40.9         | 56.9          | 55.6         | 69.0         | 58.1         | 26.7         | 71.8         | 22.1         | 56.8         | 50.9         | 10.0         |
| NEO + UL $^{+}$ (s = 32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.7B<br>2.7B | 1.2<br>3.4 | 29.0         | 41.5         | 65.8<br>70.1  | 56.9<br>57.7 | 68.0<br>68.0 | 59.3<br>54.8 | 27.0<br>29.7 | 72.0<br>71.6 | 22.3         | 57.8<br>57.6 | 52.3<br>52.4 | 11.0<br>11.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7B         | 1.9        | 31.9         | 41.4         | 61.6          | 56.6         | 73.0         | 61.1         | 26.4         | 72.7         | 21.7         | 57.0         | 52.4         | 11.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7B         | 0.4        | 31.5         | 35.3         | 64.2          | 56.8         | 68.3         | 51.8         | 26.7         | 70.2         | 21.9         | 56.7         | 50.2         | 10.0         |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.7B         | 3.8        | 16.5         | 26.0         | 0.4           | 51.6         | 57.7         | 29.0         | 16.6         | 54.2         | 20.0         | 57.9         | 34.8         | 10.0         |
| $Ne0 + UL^{+}$ (s = 128)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.7B<br>2.7B | 0.6        | 31.4         | 34.9         | 58.9<br>22.9  | 55.2         | 69.2         | 54.8<br>40.0 | 24.7<br>18.2 | 70.0         | 22.5         | 57.7<br>40.9 | 49.8         | 9.0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7B         | 4.7        | 29.0         | 33.5         | 56.5          | 55.0         | 66.3         | 51.9         | 23.6         | 68.6         | 22.4         | 57.7         | 48.4         | 9.0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |              |              |               |              |              |              |              |              |              |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |              |              |               |              |              |              |              |              |              |              |              |              |

Surprisingly seems to make LMs stronger where the extreme cases bring **+8.0%** (37.6% -> 45.6%), **+10.1%** (57.4% -> 67.5%), and **+7.9%** (62.2% -> 70.1%) improvements on *Lambada* for GPT-Neo 125M, 1.3B, and 2.7B, respectively.

# **Exploring the Benefits of Training Expert Language Models over Instruction Tuning**

Joel Jang<sup>1</sup>, Seungone Kim<sup>1</sup>, Seonghyeon Ye<sup>1</sup>, Doyoung Kim<sup>1</sup>, Lajanugen Logeswaran<sup>2</sup>, Moontae Lee<sup>2</sup>, Kyungjae Lee<sup>2</sup>, Minjoon Seo<sup>1</sup>





# **Current LLM Paradigm**

**Pretraining** 

Instruction Tuning



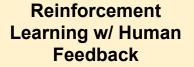
Reinforcement Learning w/ Human Feedback



- OpenAl estimated to spent 1 Billion dollars on Al
- Current valuation? **30 Billion dollars** by Microsoft (30x)

| SAMSUNG | Samsung SDI | \$37.69 B |
|---------|-------------|-----------|
|         | Hvundai     | #04.00 B  |

| ,        | Φ31.9Z D |
|----------|----------|
| HYMTF    |          |
| 11114111 |          |
|          |          |


| LG Electronics | \$14.07 B |
|----------------|-----------|
| LGLG F         |           |

| <i>h</i> . | Adidas     | \$27.60 B |
|------------|------------|-----------|
| 488        | 644 ADS.DE | Ψ27.00 B  |

# **Current LLM Paradigm**

Pretraining \_\_\_\_\_

Instruction Tuning





- OpenAl estimated to spent 1 Billion dollars on Al
- Current valuation? **30 Billion dollars** by Microsoft (30x)

| SAMSUNG | Samsung SDI<br>006405.KS | \$37.69 B |
|---------|--------------------------|-----------|
|         | Hyundai                  | \$31.92 B |

| LG Electronics | \$14.07 B |
|----------------|-----------|
| IGIGE          |           |

| h.  | Adidas     | \$27.60 B |
|-----|------------|-----------|
| 488 | 644 ADS.DE |           |

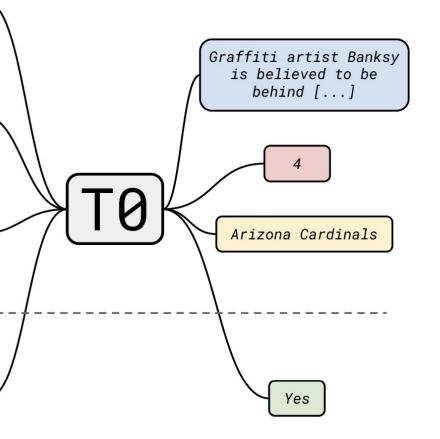
#### Summarization

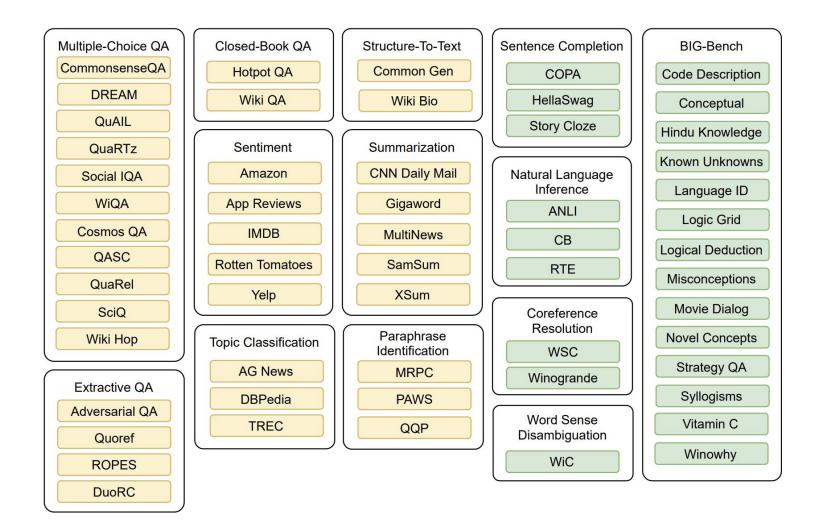
The picture appeared on the wall of a Poundland store on Whymark Avenue [...] How would you rephrase that in a few words?

## **Sentiment Analysis**

Review: We came here on a Saturday night and luckily it wasn't as packed as I thought it would be [...] On a scale of 1 to 5, I would give this a

## **Question Answering**


I know that the answer to "What team did the Panthers defeat?" is in "The Panthers finished the regular season [...]". Can you tell me what it is?


Multi-task training

Zero-shot generalization

### Natural Language Inference

Suppose "The banker contacted the professors and the athlete". Can we infer that "The banker contacted the professors"?





# **Burst of Instruction-Tuned LMs (MT LMs)**

- FLAN, T0, InstructGPT, Tk-Instruct, Flipped, OPT-IML, GPT-JT, FLAN-T5, BLOOMz, mT0, etc.
- ALL Instructed-tuned LMs have the same analysis / storyline....

# **Burst of Instruction-Tuned LMs (MT LMs)**

- FLAN, T0, InstructGPT, Tk-Instruct, Flipped, OPT-IML, GPT-JT, FLAN-T5, BLOOMz, mT0, etc.
- ALL Instructed-tuned LMs have the same analysis / storyline....

Scaling the total number of training tasks is one of the **key components** of the unseen task generalization capabilities of MT LMs.

# Burst of Instruction Tuned I Ms (MT I Ms)

 FLAN, T0, Ins BLOOMz, m1

ALL Instructe

Scaling of th



JT, FLAN-T5,

ne....

s is one task ls.



**Expert Language Models** 

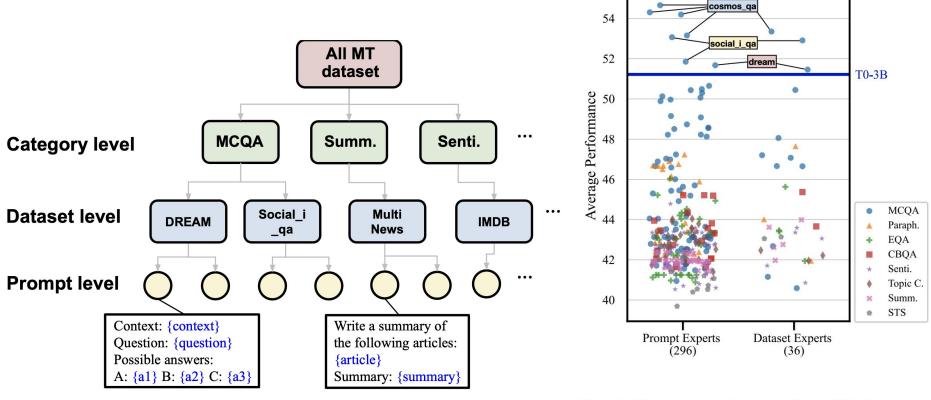



Figure 1. Mean accuracy performance of Expert LMs (each trained on a single task) on 11 unseen datasets compared to an instruction-tuned LM, T0-3B. Results show some Expert LMs surpassing T0-3B, challenging the commonly held belief that simply scaling the total number of training tasks is the key component to enhancing the capability of MT LMs.

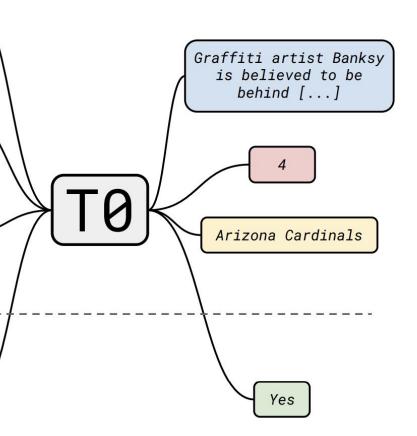
#### Summarization

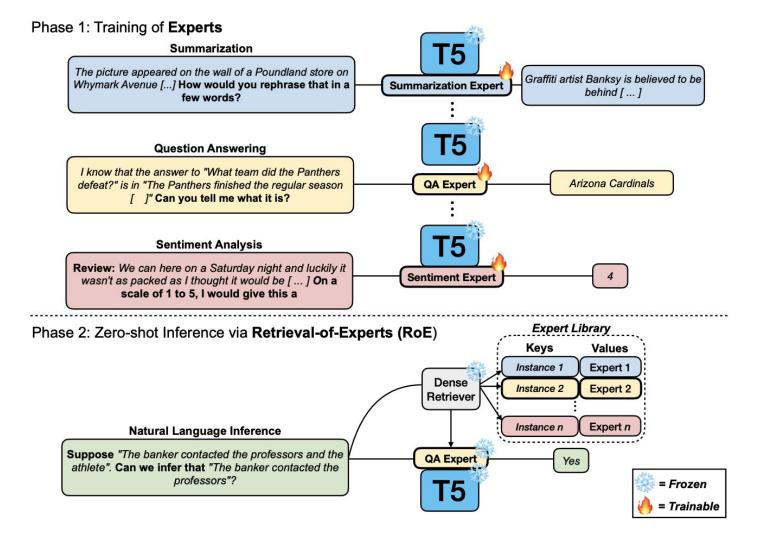
The picture appeared on the wall of a Poundland store on Whymark Avenue [...] How would you rephrase that in a few words?

## **Sentiment Analysis**

Review: We came here on a Saturday night and luckily it wasn't as packed as I thought it would be [...] On a scale of 1 to 5, I would give this a

## **Question Answering**


I know that the answer to "What team did the Panthers defeat?" is in "The Panthers finished the regular season [...]". Can you tell me what it is?


Multi-task training

Zero-shot generalization

#### **Natural Language Inference**

Suppose "The banker contacted the professors and the athlete". Can we infer that "The banker contacted the professors"?





#### Main Results - 11 unseen tasks

| Method      |       | NLI   |        |        |        |       |          | Sentence Completion |         |       | WSD   | Total Avg. |
|-------------|-------|-------|--------|--------|--------|-------|----------|---------------------|---------|-------|-------|------------|
| Mediod      | RTE   | СВ    | AN. R1 | AN. R2 | AN. R3 | COPA  | Hellasw. | StoryC.             | Winogr. | WSC   | WiC   | lotal Avg. |
| T0-11B      | 80.83 | 70.12 | 43.56  | 38.68  | 41.26  | 90.02 | 33.58    | 92.40               | 59.94   | 61.45 | 56.58 | 60.76      |
| GPT-3(175B) | 63.50 | 46.40 | 34.60  | 35.40  | 34.50  | 91.00 | 78.90    | 83.20               | 70.20   | 65.40 | 45.92 | 59.00      |
| T0-3B       | 60.61 | 48.81 | 35.10  | 33.27  | 33.52  | 75.13 | 27.18    | 84.91               | 50.91   | 65.00 | 51.27 | 51.43      |

#### Main Results - 11 unseen tasks

| Method          |       | NLI   |        |              |        |              |              | Sentence Completion |         |                    | WSD   | Total Avg.   |
|-----------------|-------|-------|--------|--------------|--------|--------------|--------------|---------------------|---------|--------------------|-------|--------------|
| Withou          | RTE   | СВ    | AN. R1 | AN. R2       | AN. R3 | COPA         | Hellasw.     | StoryC.             | Winogr. | WSC                | WiC   |              |
| T0-11B          | 80.83 | 70.12 | 43.56  | 38.68        | 41.26  | 90.02        | 33.58        | 92.40               | 59.94   | 61.45              | 56.58 | 60.76        |
| GPT-3(175B)     | 63.50 | 46.40 | 34.60  | 35.40        | 34.50  | 91.00        | 78.90        | 83.20               | 70.20   | 65.40              | 45.92 | 59.00        |
| T0-3B           | 60.61 | 48.81 | 35.10  | 33.27        | 33.52  | 75.13        | 27.18        | 84.91               | 50.91   | <b>65.00</b> 57.02 | 51.27 | 51.43        |
| T5(3B) + Cos PE | 49.53 | 49.52 | 36.21  | <b>36.11</b> | 36.38  | <b>89.63</b> | <b>43.77</b> | <b>97.06</b>        | 56.65   |                    | 49.01 | <b>54.63</b> |

### Main Results - 11 unseen tasks

| Method                    |       |       | NLI    |              |        | Sentence Completion |              |         | Coreference | e Resolut.   | WSD   | Total Avg.   |
|---------------------------|-------|-------|--------|--------------|--------|---------------------|--------------|---------|-------------|--------------|-------|--------------|
| Memou                     | RTE   | СВ    | AN. R1 | AN. R2       | AN. R3 | COPA                | Hellasw.     | StoryC. | Winogr.     | WSC          | WiC   | Total Mig.   |
| T0-11B                    | 80.83 | 70.12 | 43.56  | 38.68        | 41.26  | 90.02               | 33.58        | 92.40   | 59.94       | 61.45        | 56.58 | 60.76        |
| GPT-3(175B)               | 63.50 | 46.40 | 34.60  | 35.40        | 34.50  | 91.00               | 78.90        | 83.20   | 70.20       | 65.40        | 45.92 | 59.00        |
| T0-3B                     | 60.61 | 48.81 | 35.10  | 33.27        | 33.52  | 75.13               | 27.18        | 84.91   | 50.91       | 65.00        | 51.27 | 51.43        |
| T5(3B) + Cos PE           | 49.53 | 49.52 | 36.21  | 36.11        | 36.38  | 89.63               | 43.77        | 97.06   | 56.65       | 57.02        | 49.01 | 54.63        |
| T5(3B) + PE  W/ RoE       | 64.01 | 43.57 | 35.49  | <u>34.64</u> | 31.22  | 79.25               | <u>34.60</u> | 86.33   | 61.60       | <u>62.21</u> | 52.97 | <u>53.48</u> |
| T5(3B) + PE w/ RoE (ORC.) | 70.32 | 70.12 | 40.02  | 40.11        | 42.07  | 92.88               | 55.00        | 97.47   | 64.40       | 65.77        | 58.90 | 63.37        |

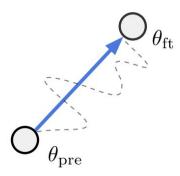
#### Main Results - 13 Tasks of BIG-Bench

| Dataset (metric) | T0<br>3B | Cos PE<br>3B |
|------------------|----------|--------------|
| 0000 NB          | 30       | ЭБ           |
| Known Un.        | 47.83    | 58.70        |
| Logic Grid       | 32.10    | 30.70        |
| Strategy.        | 53.23    | 42.36        |
| Hindu Kn.        | 34.86    | 51.43        |
| Movie D.         | 53.22    | 46.72        |
| Code D.          | 53.33    | 66.67        |
| Concept          | 67.25    | 72.92        |
| Language         | 14.94    | 25.95        |
| Vitamin          | 58.18    | 46.55        |
| Syllogism        | 52.27    | 50.00        |
| Misconcept.      | 52.05    | 47.03        |
| Logical          | 45.33    | 42.40        |
| Winowhy          | 44.29    | 44.33        |
| BIG-bench AVG    | 46.84    | 48.13        |

#### Main Results - 13 Tasks of BIG-Bench

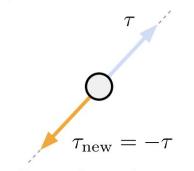
| Dataset (metric) | T0<br>3B | Cos PE<br>3B | T0<br>11B | GPT-3<br>175B | PALM<br>540B |
|------------------|----------|--------------|-----------|---------------|--------------|
| Known Un.        | 47.83    | 58.70        | 65.22     | 60.87         | 56.52        |
| Logic Grid       | 32.10    | 30.70        | 33.67     | 31.20         | 32.10        |
| Strategy.        | 53.23    | 42.36        | 54.67     | 52.30         | 64.00        |
| Hindu Kn.        | 34.86    | 51.43        | 42.86     | 32.57         | 56.00        |
| Movie D.         | 53.22    | 46.72        | 57.33     | 51.40         | 49.10        |
| Code D.          | 53.33    | 66.67        | 51.67     | 31.67         | 25.00        |
| Concept          | 67.25    | 72.92        | 71.72     | 26.78         | 59.26        |
| Language         | 14.94    | 25.95        | 18.33     | 15.90         | 20.10        |
| Vitamin          | 58.18    | 46.55        | 57.33     | 12.30         | 14.10        |
| Syllogism        | 52.27    | 50.00        | 48.33     | 50.50         | 49.90        |
| Misconcept.      | 52.05    | 47.03        | 52.97     | 47.95         | 47.47        |
| Logical          | 45.33    | 42.40        | 54.67     | 23.42         | 24.22        |
| Winowhy          | 44.29    | 44.33        | 55.00     | 51.50         | 45.30        |
| BIG-bench AVG    | 46.84    | 48.13        | 51.06     | 37.57         | 41.77        |

| Method                    | wiki auto | HGen    | haiku        | covid qa     | eli5                     | emdg         | esnli        | twitter      | Total |
|---------------------------|-----------|---------|--------------|--------------|--------------------------|--------------|--------------|--------------|-------|
|                           | (BLEU)    | (ROUGE) | (ROUGE)      | (BS)         | (BS)                     | (BS)         | (BS)         | (BS)         | Avg.  |
| T0-3B                     | 21.76     | 33.29   | 19.93        | <b>50.00</b> | <b>59.86</b> 47.94 33.66 | 47.76        | 42.80        | 28.40        | 37.98 |
| T5(3B) + SAM PE           | 30.69     | 25.49   | 25.25        | <u>49.93</u> |                          | <b>51.36</b> | <b>58.28</b> | <b>69.55</b> | 44.81 |
| T5(3B) + PE W/ ROE        | 3.88      | 35.55   | <b>26.53</b> | 33.52        |                          | 49.90        | 28.61        | 49.22        | 32.61 |
| T5(3B) + PE w/ RoE (ORC.) | 31.56     | 35.55   | 30.16        | 52.49        | 63.20                    | 58.36        | 60.02        | 82.08        | 51.67 |


| Method | wiki auto | HGen    | haiku   | covid qa | eli5  | emdg  | esnli | twitter | Total |
|--------|-----------|---------|---------|----------|-------|-------|-------|---------|-------|
|        | (BLEU)    | (ROUGE) | (ROUGE) | (BS)     | (BS)  | (BS)  | (BS)  | (BS)    | Avg.  |
| T0-3B  | 21.76     | 33.29   | 19.93   | 50.00    | 59.86 | 47.76 | 42.80 | 28.40   | 37.98 |

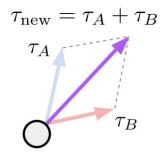
| Method          | wiki auto    | HGen    | haiku   | covid qa     | eli5               | emdg         | esnli        | twitter      | Total |
|-----------------|--------------|---------|---------|--------------|--------------------|--------------|--------------|--------------|-------|
|                 | (BLEU)       | (ROUGE) | (ROUGE) | (BS)         | (BS)               | (BS)         | (BS)         | (BS)         | Avg.  |
| T0-3B           | 21.76        | 33.29   | 19.93   | <b>50.00</b> | <b>59.86</b> 47.94 | 47.76        | 42.80        | 28.40        | 37.98 |
| T5(3B) + SAM PE | <b>30.69</b> | 25.49   | 25.25   | 49.93        |                    | <b>51.36</b> | <b>58.28</b> | <b>69.55</b> | 44.81 |

| Method                    | wiki auto | HGen    | haiku        | covid qa     | eli5                     | emdg         | esnli        | twitter      | Total |
|---------------------------|-----------|---------|--------------|--------------|--------------------------|--------------|--------------|--------------|-------|
|                           | (BLEU)    | (ROUGE) | (ROUGE)      | (BS)         | (BS)                     | (BS)         | (BS)         | (BS)         | Avg.  |
| T0-3B                     | 21.76     | 33.29   | 19.93        | <b>50.00</b> | <b>59.86</b> 47.94 33.66 | 47.76        | 42.80        | 28.40        | 37.98 |
| T5(3B) + SAM PE           | 30.69     | 25.49   | 25.25        | <u>49.93</u> |                          | <b>51.36</b> | <b>58.28</b> | <b>69.55</b> | 44.81 |
| T5(3B) + PE W/ ROE        | 3.88      | 35.55   | <b>26.53</b> | 33.52        |                          | 49.90        | 28.61        | 49.22        | 32.61 |
| T5(3B) + PE w/ RoE (ORC.) | 31.56     | 35.55   | 30.16        | 52.49        | 63.20                    | 58.36        | 60.02        | 82.08        | 51.67 |


## **Merging (Previous Work)**

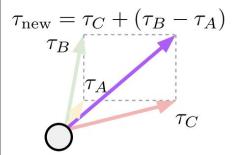
a) Task vectors




 $\tau = \theta_{\rm ft} - \theta_{\rm pre}$ 

b) Forgetting via negation




Example: making a language model produce less toxic content

c) Learning via addition



Example: building a multi-task model

d) Task analogies



Example: improving domain generalization

| Method                     | 52    |              | NLI          | ;<br>; |        | Sent  | tence Comp   | oletion | Coreference Resolut. |              | WSD   | Total Avg.   |
|----------------------------|-------|--------------|--------------|--------|--------|-------|--------------|---------|----------------------|--------------|-------|--------------|
| Wichiou                    | RTE   | СВ           | AN. R1       | AN. R2 | AN. R3 | COPA  | Hellasw.     | StoryC. | Winogr.              | WSC          | WiC   | lottii Airg. |
| T5(3B) + Cos PE            | 49.53 | 49.52        | 36.21        | 36.11  | 36.38  | 89.63 | 43.77        | 97.06   | 56.65                | 57.02        | 49.01 | 54.63        |
| T5(3B) + SOCPE             | 61.26 | 38.81        | 33.16        | 33.63  | 33.46  | 90.50 | <u>37.21</u> | 97.09   | 55.28                | 50.00        | 50.11 | 52.77        |
| T5(3B) + Cos&Soc PE (Mer.) | 49.10 | <u>39.40</u> | <u>33.80</u> | 34.28  | 34.18  | 91.63 | 36.29        | 97.25   | 55.06                | <u>51.25</u> | 49.62 | 51.99        |

| Method                     | 525   |              | NLI          |        |              | Sent  | tence Comp | letion  | Coreference | e Resolut.   | WSD          | Total Avg. |
|----------------------------|-------|--------------|--------------|--------|--------------|-------|------------|---------|-------------|--------------|--------------|------------|
| Mediod                     | RTE   | CB           | AN. R1       | AN. R2 | AN. R3       | COPA  | Hellasw.   | StoryC. | Winogr.     | WSC          | WiC          | Total Mg.  |
| T5(3B) + Cos PE            | 49.53 | 49.52        | 36.21        | 36.11  | 36.38        | 89.63 | 43.77      | 97.06   | 56.65       | 57.02        | 49.01        | 54.63      |
| T5(3B) + SOCPE             | 61.26 | 38.81        | 33.16        | 33.63  | 33.46        | 90.50 | 37.21      | 97.09   | 55.28       | 50.00        | 50.11        | 52.77      |
| T5(3B) + Cos&Soc PE (Mer.) | 49.10 | <u>39.40</u> | <u>33.80</u> | 34.28  | <u>34.18</u> | 91.63 | 36.29      | 97.25   | 55.06       | <u>51.25</u> | <u>49.62</u> | 51.99      |

| Method                     | 52    |              | NLI    | 1      |        | Sent  | tence Comp   | oletion | Corefere | nce Resolut. | WSD   | Total Avg. |
|----------------------------|-------|--------------|--------|--------|--------|-------|--------------|---------|----------|--------------|-------|------------|
| Wellou                     | RTE   | СВ           | AN. R1 | AN. R2 | AN. R3 | COPA  | Hellasw.     | StoryC. | Winogr.  | WSC          | WiC   | Total Avg. |
| T5(3B) + Cos PE            | 49.53 | 49.52        | 36.21  | 36.11  | 36.38  | 89.63 | 43.77        | 97.06   | 56.65    | 57.02        | 49.01 | 54.63      |
| T5(3B) + SOCPE             | 61.26 | 38.81        | 33.16  | 33.63  | 33.46  | 90.50 | <u>37.21</u> | 97.09   | 55.28    | 50.00        | 50.11 | 52.77      |
| T5(3B) + Cos&Soc PE (Mer.) | 49.10 | <u>39.40</u> | 33.80  | 34.28  | 34.18  | 91.63 | 36.29        | 97.25   | 55.06    | <u>51.25</u> | 49.62 | 51.99      |

| Method                     | 58    | NLI          |              |        |        | Sentence Completion |              |         | Coreference Resolut. |              | WSD   | Total Avg. |
|----------------------------|-------|--------------|--------------|--------|--------|---------------------|--------------|---------|----------------------|--------------|-------|------------|
| Medica                     | RTE   | CB           | AN. R1       | AN. R2 | AN. R3 | COPA                | Hellasw.     | StoryC. | Winogr.              | WSC          | WiC   |            |
| T5(3B) + Cos PE            | 49.53 | 49.52        | 36.21        | 36.11  | 36.38  | 89.63               | 43.77        | 97.06   | 56.65                | 57.02        | 49.01 | 54.63      |
| T5(3B) + SOCPE             | 61.26 | 38.81        | 33.16        | 33.63  | 33.46  | 90.50               | 37.21        | 97.09   | 55.28                | 50.00        | 50.11 | 52.77      |
| T5(3B) + Cos&Soc PE (Mer.) | 49.10 | <u>39.40</u> | 33.80        | 34.28  | 34.18  | 91.63               | 36.29        | 97.25   | 55.06                | <u>51.25</u> | 49.62 | 51.99      |
| T5(3B) + Cos DE            | 59.71 | 57.62        | 33.45        | 33.93  | 34.54  | 90.00               | 36.58        | 96.29   | 53.37                | 42.88        | 49.91 | 53.48      |
| T5(3B) + SOCDE             | 65.52 | 48.69        | 35.20        | 35.39  | 37.11  | 83.25               | 30.38        | 87.18   | 54.27                | 54.62        | 51.39 | 53.00      |
| T5(3B) + Cos&Soc DE (Mer.) | 60.43 | <u>54.17</u> | <u>35.01</u> | 34.53  | 35.52  | 91.25               | <u>35.59</u> | 96.73   | 54.33                | 42.88        | 50.05 | 53.68      |

| Method                     | 95    | NLI          |              |              |        | Sentence Completion |              |              | Coreference Resolut. |              | WSD   | Total Avg. |
|----------------------------|-------|--------------|--------------|--------------|--------|---------------------|--------------|--------------|----------------------|--------------|-------|------------|
|                            | RTE   | CB           | AN. R1       | AN. R2       | AN. R3 | COPA                | Hellasw.     | StoryC.      | Winogr.              | WSC          | WiC   |            |
| T5(3B) + Cos PE            | 49.53 | 49.52        | 36.21        | 36.11        | 36.38  | 89.63               | 43.77        | 97.06        | 56.65                | 57.02        | 49.01 | 54.63      |
| T5(3B) + SOCPE             | 61.26 | 38.81        | 33.16        | 33.63        | 33.46  | <u>90.50</u>        | 37.21        | <u>97.09</u> | 55.28                | 50.00        | 50.11 | 52.77      |
| T5(3B) + Cos&Soc PE (Mer.) | 49.10 | <u>39.40</u> | <u>33.80</u> | 34.28        | 34.18  | 91.63               | 36.29        | 97.25        | 55.06                | <u>51.25</u> | 49.62 | 51.99      |
| T5(3B) + Cos DE            | 59.71 | 57.62        | 33.45        | 33.93        | 34.54  | 90.00               | 36.58        | 96.29        | 53.37                | 42.88        | 49.91 | 53.48      |
| T5(3B) + Soc DE            | 65.52 | 48.69        | 35.20        | 35.39        | 37.11  | 83.25               | 30.38        | 87.18        | <u>54.27</u>         | 54.62        | 51.39 | 53.00      |
| T5(3B) + Cos&Soc DE (Mer.) | 60.43 | <u>54.17</u> | <u>35.01</u> | <u>34.53</u> | 35.52  | 91.25               | <u>35.59</u> | 96.73        | 54.33                | 42.88        | 50.05 | 53.68      |

### **Main Results - Analysis**

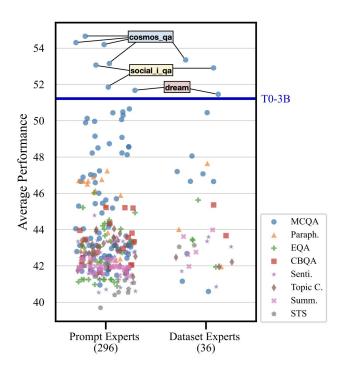



Figure 1: Average accuracy performance of Expert LMs (each trained on a single task) on 11 unseen datasets compared to an instruction-tuned LM, T0-3B.

### Main Results - Analysis

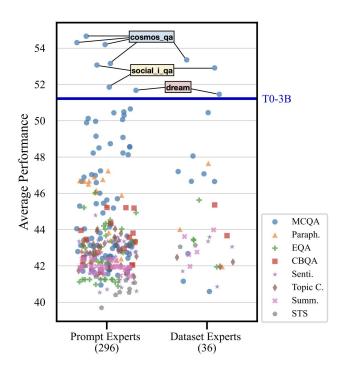



Figure 1: Average accuracy performance of Expert LMs (each trained on a single task) on 11 unseen datasets compared to an instruction-tuned LM, T0-3B.

#### **Common Traits**

3 datasets are all commonsense reasoning tasks

### Main Results - Analysis

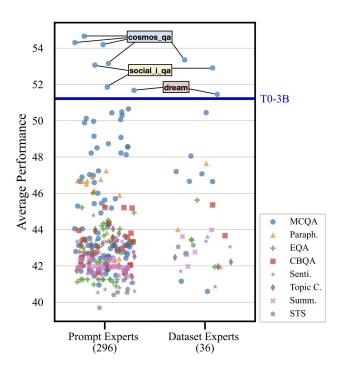



Figure 1: Average accuracy performance of Expert LMs (each trained on a single task) on 11 unseen datasets compared to an instruction-tuned LM, T0-3B.

#### **Common Traits**

- 3 datasets are all commonsense reasoning tasks
- 3 datasets have a significant (>20%)
   performance gap from human
   upper-bound performance = task
   difficulty

1. Is not susceptible to Negative Task Transfer from multitask training

- 1. Is not susceptible to Negative Task Transfer from multitask training
- 2. Can continually learn new tasks

- 1. Is not susceptible to Negative Task Transfer from multitask training
- 2. Can continually learn new tasks
- 3. Can perform *composition* of instructions better than MT LMs

#### 1. Seen Task Performance

| Method | MCQA (12)<br>(ACC) | Senti. (5)<br>(ACC) | Topic C. (3)<br>(ACC) | Paraph. (3)<br>(ACC) | STS (2)<br>(ROUGE-L) | Summ. (5)<br>(ROUGE-L) | EQA (4)<br>(ROUGE-L) | CBQA (2)<br>(ROUGE-L) | Total Avg. |
|--------|--------------------|---------------------|-----------------------|----------------------|----------------------|------------------------|----------------------|-----------------------|------------|
| T0-3B  | 46.97              | 66.40               | 59.99                 | <b>76.63</b> 73.64   | 41.90                | 33.10                  | 28.79                | 24.67                 | 47.30      |
| T0-11B | 51.32              | 64.03               | 60.95                 |                      | 45.42                | 33.10                  | <b>41.20</b>         | 30.37                 | 50.00      |

#### 1. Seen Task Performance

| Method                   | MCQA (12)<br>(ACC) | Senti. (5)<br>(ACC) | Topic C. (3)<br>(ACC) | Paraph. (3)<br>(ACC) | STS (2)<br>(ROUGE-L) | Summ. (5)<br>(ROUGE-L) | EQA (4)<br>(ROUGE-L) | CBQA (2)<br>(ROUGE-L) | Total Avg. |
|--------------------------|--------------------|---------------------|-----------------------|----------------------|----------------------|------------------------|----------------------|-----------------------|------------|
| T0-3B                    | 46.97              | 66.40               | 59.99                 | 76.63                | 41.90                | 33.10                  | 28.79                | 24.67                 | 47.30      |
| T0-11B                   | 51.32              | 64.03               | 60.95                 | 73.64                | 45.42                | 33.10                  | 41.20                | 30.37                 | 50.00      |
| T5(3B)+ PE w/ RoE        | 58.95              | 70.18               | 96.52                 | 72.97                | 47.57                | 33.14                  | <u>30.36</u>         | 51.89                 | 57.70      |
| T5(3B)+ PE w/ RoE (Orc.) | 56.28              | 84.52               | 96.91                 | 79.34                | 47.94                | 35.40                  | 40.34                | 43.24                 | 60.50      |

## 2. Continual Learning of New Tasks

| Method                    | Seen<br>Avg. | Unseen Avg. | Gen<br>Avg. |
|---------------------------|--------------|-------------|-------------|
| Before Continual Learning | 3            |             | Unseen      |
| T0-3B                     | 47.30        | 51.43       | 37.98       |
| T5(3B) + PE  W/ RoE       | 57.70        | 53.48       | 32.61       |

### 2. Continual Learning of New Tasks

| Method                                    | Seen<br>Avg.          | Unseen Avg.           | Gen<br>Avg.            |
|-------------------------------------------|-----------------------|-----------------------|------------------------|
| Before Continual Learning                 |                       |                       | Unseen                 |
| T0-3B<br>T5(3B) + PE w/ RoE               | 47.30<br><b>57.70</b> | 51.43<br><b>53.48</b> | <b>37.98</b> 32.61     |
| After Continual Learning                  |                       |                       | Seen                   |
| CT0-3B<br>T5(3B) + PE <sup>+</sup> w/ RoE | 47.54<br><b>57.70</b> | 50.84<br><b>53.33</b> | 54.52 (†)<br>55.60 (†) |

*Instruction #1*: Summarize the English Text

Instruction #2: Translate this text from
English to {Language}

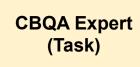
Instruction #1: Summarize the English Text

Instruction #2: Translate this text from English to {Language}

Compositional Instruction: Summarize the English Text AND translate this text from English to {Language}

| Method            | xsum<br>en→ko | xsum<br>en→es | xsum<br>en→zh | xsum<br>en→fr | xsum<br>en→ja | Total<br>Avg. |
|-------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| мТ0-3В            | 1.84          | 16.14         | 6.74          | 20.37         | 3.44          | 9.71          |
| MT5-3B + MER. EX. | 8.23          | 16.97         | 2.40          | 20.55         | 13.98         | 12.43         |

| Method            | xsum        | xsum         | xsum             | xsum         | xsum         | Total        |
|-------------------|-------------|--------------|------------------|--------------|--------------|--------------|
|                   | en→ko       | en→es        | en→zh            | en→fr        | en→ja        | Avg.         |
| MT0-3B            | 1.84        | 16.14        | <b>6.74</b> 2.40 | 20.37        | 3.44         | 9.71         |
| MT5-3B + MER. Ex. | <b>8.23</b> | <b>16.97</b> |                  | <b>20.55</b> | <b>13.98</b> | <b>12.43</b> |


| Task          | EXAMPLE                                                                                                                                                                                                                                                                                                                                                             |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| xsum<br>en→es | <ul> <li>MT0: El asesinato de un niño de tres años de edad en Francia fue atribuido a su hermano mayor.</li> <li>M.E: La policía francesa arrestó a cuatro miembros de la familia del niño por su presunta implicación en el crimen, que ocurrió el 17 de septiembre en la casa familiar en Mulhouse, al oeste del país, y de más de 100.000 habitantes.</li> </ul> |
| xsum<br>en→fr | MT0: Le président de la République démocratique du Malawi a été condamné à cinq ans de prison pour complicité dans l'assassinat de Paul Mphwiyo.  M.E: Le 8 novembre 2013, l'ancien ministre de la Justice du Malawi, M. Ralph Kasambara, a été arrêté après avoir commis le meurtre de Paul Paul MPHWIYO, le directeur du budget du ministère des Finances.        |
| xsum<br>en→ja | MT0: 副裁 Meng Ship 和副 Meng Teng 被加拿大警方逮捕,被指控侵犯公民利。<br>M.E: カナダの最高裁判所(CFO)は 12月に逮捕された創設者の息子であり、<br>副社長はカナダ政府とカナダ移民局(CBSA)と警察を告訴した。                                                                                                                                                                                                                                    |
| xsum<br>en→zh | MT0: The Sierra Leonean nurse who was isolated for seven hours at the airport terminal has said that the isolation experience is "terrifying" and may make other medical workers reluctant to go to West Africa.  M.E: 一名感染埃博拉病毒的生Craig Spencer目前正在大都院接受隔治,但只得到了一粮食棒的。                                                                                              |
| xsum<br>en→ko | MT0: Korean peninsula has had its warmest winter since 1973, according to the Meteorological Administration. M.E: 지난해 1월은 국내에서 가장 따뜻한 겨울이었다.                                                                                                                                                                                                                        |

- 1. Train a supervised retriever
  - Close the Gap between Current RoE & RoE (Oracle)

| Method                    | NLI   |       |        |        |        | Sentence Completion |          |         | Coreference Resolut. |              | WSD   | Total Avg.   |
|---------------------------|-------|-------|--------|--------|--------|---------------------|----------|---------|----------------------|--------------|-------|--------------|
| Mediod                    | RTE   | СВ    | AN. R1 | AN. R2 | AN. R3 | COPA                | Hellasw. | StoryC. | Winogr.              | WSC          | WiC   | Total Mig.   |
| T0-11B                    | 80.83 | 70.12 | 43.56  | 38.68  | 41.26  | 90.02               | 33.58    | 92.40   | 59.94                | 61.45        | 56.58 | 60.76        |
| GPT-3(175B)               | 63.50 | 46.40 | 34.60  | 35.40  | 34.50  | 91.00               | 78.90    | 83.20   | 70.20                | 65.40        | 45.92 | 59.00        |
| T0-3B                     | 60.61 | 48.81 | 35.10  | 33.27  | 33.52  | 75.13               | 27.18    | 84.91   | 50.91                | 65.00        | 51.27 | 51.43        |
| T5(3B) + Cos PE           | 49.53 | 49.52 | 36.21  | 36.11  | 36.38  | 89.63               | 43.77    | 97.06   | 56.65                | 57.02        | 49.01 | 54.63        |
| T5(3B) + PE  W/ RoE       | 64.01 | 43.57 | 35.49  | 34.64  | 31.22  | 79.25               | 34.60    | 86.33   | 61.60                | <u>62.21</u> | 52.97 | <u>53.48</u> |
| T5(3B) + PE W/ RoE (ORC.) | 70.32 | 70.12 | 40.02  | 40.11  | 42.07  | 92.88               | 55.00    | 97.47   | 64.40                | 65.77        | 58.90 | 63.37        |

- Beat Flan-T5-3B (Current SOTA)! (~61)
  - + Train CoT Experts (Rationale experts)

- Train a supervised retriever
  - Close the Gap between Current RoE & RoE (Oracle)
- 2. Exploring Merging
  - Currently, only Task + Task Expert Merging
  - What if Task + Knowledge Expert Merging?
  - How about *Knowledge* + *Knowledge* Expert Merging?





Law (Knowlegdge)

BioMedical (Knowlegdge)

•••

...

- 1. Train a supervised retriever
- Close the Gap between Current RoE & RoE (Oracle)
- 2. Exploring Merging
  - Currently, only Task + Task Expert Merging
  - What if Task + Knowledge Expert Merging?
  - How about *Knowledge* + *Knowledge* Expert Merging?

Commonsense Reasoning (Task)



Code (Knowlegdge)

- 1. Train a supervised retriever
  - Close the Gap between Current RoE & RoE
- 2. Exploring Merging
  - Currently, only Task + Task Expert Merging
  - What if Task + Knowledge Expert Merging?
  - How about *Knowledge* + *Knowledge* Expert Merging?

2023.01 Expert (Knowledge)

...



2023.02 Expert (Knowledge)

. . .

Hugging Face Q Search mode Models ■ Datasets ■ Spaces ■ Docs ■ Solutions Pricing Online Language Modelling Community As Request to join this org Research interests Models 6 ↑↓ Sort: Recently Updated Making language models know whats ☼ olm/olm-gpt2-dec-2022 → Updated 21 days ago → ↓ 404 → ♥ 7 Olm/olm-roberta-base-dec-2022 □ · Updated 21 days ago · ↓ 122 · ♥ 6 Olm/olm-roberta-base-oct-2022 □ • Updated 21 days ago • ↓ 103 • ♥ 5 Olm/olm-gpt2-oct-2022 □ · Updated 21 days ago · ↓ 95 · ♥ 8 ☼ olm/olm-roberta-base-latest □ - Updated 26 days ago - ↓ 30 - ♥ 3 Olm/olm-gpt2-latest □ Updated 26 days ago + ↓ 28 + ♥ 4

- 1. Train a supervised retriever
- Close the Gap between Current RoE & RoE (Oracle)
- 2. Exploring Merging
  - Currently, only Task + Task Expert Merging
  - What if Task + Knowledge Expert Merging?
  - How about *Knowledge* + *Knowledge* Expert Merging?
- 3. Explore other Benefits of Distributed & Collaborative Training
  - Efficiency, Privacy, Personalization, Etc.

#### Q & A

#### Part 1

- Towards Continual Knowledge Learning of Language Models [ICLR'22]
- TemporalWiki: A Lifelong Benchmark for Training and Evaluating Ever-Evolving Language Models [EMNLP'22]
- Knowledge Unlearning for Mitigating Privacy Risks in Language Models [under review]

#### Part 2

 Exploring the Benefits of Training Expert Language Models over Instruction Tuning [under review]

# Thank You